- -

A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Koerner, Mark-Christoph es_ES
dc.contributor.author Mesa, Juan A. es_ES
dc.contributor.author Perea Rojas Marcos, Federico es_ES
dc.contributor.author Schoebel, Anita es_ES
dc.contributor.author Scholz, Daniel es_ES
dc.date.accessioned 2016-04-20T09:58:40Z
dc.date.available 2016-04-20T09:58:40Z
dc.date.issued 2012-04
dc.identifier.issn 1134-5764
dc.identifier.uri http://hdl.handle.net/10251/62769
dc.description.abstract [EN] In this paper the following facility location problem in a mixed planar-network space is considered: We assume that traveling along a given network is faster than traveling within the plane according to the Euclidean distance. A pair of points (A i, A j) is called covered if the time to access the network from A i plus the time for traveling along the network plus the time for reaching A j is lower than, or equal to, a given acceptance level related to the travel time without using the network. The objective is to find facilities (i.e. entry and exit points) on the network that maximize the number of covered pairs. We present a reformulation of the problem using convex covering sets and use this formulation to derive a finite dominating set and an algorithm for locating two facilities on a tree network. Moreover, we adapt a geometric branch and bound approach to the discrete nature of the problem and suggest a procedure for locating more than two facilities on a single line, which is evaluated numerically. © 2012 Sociedad de Estadística e Investigación Operativa. es_ES
dc.description.sponsorship This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority-6th FP), under contract no. FP6-021235-2 (project ARRIVAL), by Ministerio de Educacion, Ciencia e Innovacion (Spain)/FEDER under project MTM2009-14243 and by Junta de Andalucia (Spain)/FEDER under excellence projects P09-TEP-5022 and FQM-5849.
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof TOP es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Covering problem es_ES
dc.subject Location es_ES
dc.subject Transportation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11750-012-0251-y
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/021235-2/EU/Algorithms for Robust and on-line Railway optimisation: Improving the validity and reliability of large-scale systems/ARRIVAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-14243/ES/Optimizacion De La Robustez En Analisis De Localizaciones Y Diseño De Redes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P09-TEP-5022/ES/Metodologías Para El Diseño, La Planificación Robusta De Redes Y La Operación Mixta Del Transporte Por Ferrocarril. Aspectos Intermodales Y Convergencia Con Las Políticas De La Ue/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-5849/ES/Nuevos desafíos de la matemática combinatoria: Enfoques no estándares en optimización discreta y álgebra computacional. Aplicaciones/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Koerner, M.; Mesa, JA.; Perea Rojas Marcos, F.; Schoebel, A.; Scholz, D. (2012). A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments. TOP. 22(1):227-253. https://doi.org/10.1007/s11750-012-0251-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11750-012-0251-y es_ES
dc.description.upvformatpinicio 227 es_ES
dc.description.upvformatpfin 253 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 221922 es_ES
dc.identifier.eissn 1863-8279
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Educación y Ciencia e Innovación
dc.contributor.funder Junta de Andalucía
dc.description.references Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288 es_ES
dc.description.references Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306 es_ES
dc.description.references Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117 es_ES
dc.description.references Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network. Eur J Oper Res 151:474–480 es_ES
dc.description.references Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Glob Optim 45:389–402 es_ES
dc.description.references Cardinal J, Collette S, Hurtado F, Langerman S, Palop B (2008) Optimal location of transportation devices. Comput Geom 41:319–329 es_ES
dc.description.references Carrizosa E, Rodríguez-Chía A (1997) Weber problems with alternative transportation systems. Eur J Oper Res 97:87–93 es_ES
dc.description.references Dearing P, Francis RL, Lowe TJ (1976) Convex location problems on tree networks. Oper Res 24:628–642 es_ES
dc.description.references Görke R, Shin CS, Wolff A (2008) Constructing the city voronoi diagram faster. Int J Comput Geom Appl 18:275–294 es_ES
dc.description.references Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems revisited. Oper Res 33:1251–1265 es_ES
dc.description.references Horst R, Thoai N (1999) DC programming: overview. J Optim Theory Appl 103:1–43 es_ES
dc.description.references Kirwan F (1992) Complex algebraic curves. Cambridge University Press, Cambridge es_ES
dc.description.references Koolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location theory. Wiley-Interscience, New York es_ES
dc.description.references Körner MC, Schöbel A (2010) Weber problems with high–speed lines. TOP 18:223–241 es_ES
dc.description.references Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63 es_ES
dc.description.references Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res, Part B 44:447–459 es_ES
dc.description.references Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45:54–65 es_ES
dc.description.references Márquez-Diez-Canedo J (1987) Fundamentos de Teoría de Optimización. Limusa, México es_ES
dc.description.references Ortúzar JD, Willumsen LG (2001) Modelling transport. Wiley, New York es_ES
dc.description.references Pfeiffer B, Klamroth K (2008) Unified model for weber problems with continuous and network distances. Comput Oper Res 35:312–326 es_ES
dc.description.references Plastria F (1992) GBSSS: the generalized big square small square method for planar single-facility location. Eur J Oper Res 62:163–174 es_ES
dc.description.references Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin es_ES
dc.description.references Preparata F, Shamos M (1985) Computational geometry, an introduction. Springer, Berlin es_ES
dc.description.references Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122 es_ES
dc.description.references Scholz D (2010) Geometric branch & bound methods in global optimization: theory and applications to facility location problems. Ph.D. thesis, Universität Göttingen. To appear at Springer es_ES
dc.description.references Scholz D, Schöbel A (2010) The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J Glob Optim 48(3):473–495 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem