- -

Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pandis, Christos es_ES
dc.contributor.author Trujillo Muñoz, Sara es_ES
dc.contributor.author Matos, Joana es_ES
dc.contributor.author Madeira, Sara es_ES
dc.contributor.author Ródenas Rochina, Joaquín es_ES
dc.contributor.author Kripotou, Sotiria es_ES
dc.contributor.author Kyritsis, Apostolos es_ES
dc.contributor.author Mano, Joao F. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2016-05-10T11:28:05Z
dc.date.issued 2015-02
dc.identifier.issn 1616-5187
dc.identifier.uri http://hdl.handle.net/10251/63849
dc.description.abstract A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix. es_ES
dc.description.sponsorship The research project is implemented within the framework of the Action "Supporting Postdoctoral Researchers" of the Operational Program "Education and Lifelong Learning'' (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, Grant No.: NARGEL-PE5(2551). J.R.R. acknowledges funding of his PhD by the Generalitat Valenciana through VALi+d grant (ACIF/2010/238). J.F.M. thanks the Portuguese Foundation for Science and Technology (FCT) for financial support through the PTDC/FIS/115048/2009 project. J.L.G.R. acknowledges the support of the Ministerio de Economia y Competitividad, MINECO, through theMAT2013-46467-C4-1-R project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Macromolecular Bioscience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject organic-inorganic hybrid composites es_ES
dc.subject porosity es_ES
dc.subject proliferation and osteoblastic differentiation of cells es_ES
dc.subject sol-gel processes es_ES
dc.subject thermomechanical properties es_ES
dc.subject Differentiation of cells
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/mabi.201400339
dc.relation.projectID info:eu-repo/grantAgreement/J4FCT/5876-PPCDTI/115048/PT/
dc.relation.projectID info:eu-repo/grantAgreement/GSRT//NARGEL-PE5 (2551)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2010%2F238/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Pandis, C.; Trujillo Muñoz, S.; Matos, J.; Madeira, S.; Ródenas Rochina, J.; Kripotou, S.; Kyritsis, A.... (2015). Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience. 15(2):262-274. https://doi.org/10.1002/mabi.201400339 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/mabi.201400339 es_ES
dc.description.upvformatpinicio 262 es_ES
dc.description.upvformatpfin 274 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 300840 es_ES
dc.identifier.eissn 1616-5195
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder General Secretariat for Research and Technology, Grecia
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Södergård, A., & Stolt, M. (2010). Industrial Production of High Molecular Weight Poly(Lactic Acid). Poly(Lactic Acid), 27-41. doi:10.1002/9780470649848.ch3 es_ES
dc.description.references Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092 es_ES
dc.description.references Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prósper, F. (2012). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737-1750. doi:10.1007/s00167-012-2148-6 es_ES
dc.description.references Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475-2490. doi:10.1016/s0142-9612(00)00115-0 es_ES
dc.description.references Jiao, Y.-P., & Cui, F.-Z. (2007). Surface modification of polyester biomaterials for tissue engineering. Biomedical Materials, 2(4), R24-R37. doi:10.1088/1748-6041/2/4/r02 es_ES
dc.description.references Zhu, Y., Mao, Z., & Gao, C. (2013). Aminolysis-based surface modification of polyesters for biomedical applications. RSC Adv., 3(8), 2509-2519. doi:10.1039/c2ra22358a es_ES
dc.description.references Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002 es_ES
dc.description.references Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. doi:10.1016/j.biomaterials.2006.01.039 es_ES
dc.description.references Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005 es_ES
dc.description.references Sinha Ray, S., Yamada, K., Okamoto, M., & Ueda, K. (2002). Polylactide-Layered Silicate Nanocomposite:  A Novel Biodegradable Material. Nano Letters, 2(10), 1093-1096. doi:10.1021/nl0202152 es_ES
dc.description.references Wu, C.-S., & Liao, H.-T. (2007). Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer, 48(15), 4449-4458. doi:10.1016/j.polymer.2007.06.004 es_ES
dc.description.references Verrier, S., Blaker, J. J., Maquet, V., Hench, L. L., & Boccaccini, A. R. (2004). PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials, 25(15), 3013-3021. doi:10.1016/j.biomaterials.2003.09.081 es_ES
dc.description.references Papageorgiou, G. Z., Achilias, D. S., Nanaki, S., Beslikas, T., & Bikiaris, D. (2010). PLA nanocomposites: Effect of filler type on non-isothermal crystallization. Thermochimica Acta, 511(1-2), 129-139. doi:10.1016/j.tca.2010.08.004 es_ES
dc.description.references Fukushima, K., Tabuani, D., Abbate, C., Arena, M., & Rizzarelli, P. (2011). Preparation, characterization and biodegradation of biopolymer nanocomposites based on fumed silica. European Polymer Journal, 47(2), 139-152. doi:10.1016/j.eurpolymj.2010.10.027 es_ES
dc.description.references Demirdögen, B., Plazas Bonilla, C. E., Trujillo, S., Perilla, J. E., Elcin, A. E., Elcin, Y. M., & Gómez Ribelles, J. L. (2013). Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. Journal of Biomedical Materials Research Part A, 102(9), 3229-3236. doi:10.1002/jbm.a.34999 es_ES
dc.description.references Pandis, C., Madeira, S., Matos, J., Kyritsis, A., Mano, J. F., & Ribelles, J. L. G. (2014). Chitosan–silica hybrid porous membranes. Materials Science and Engineering: C, 42, 553-561. doi:10.1016/j.msec.2014.05.073 es_ES
dc.description.references Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 es_ES
dc.description.references Gong, Y., Zhu, Y., Liu, Y., Ma, Z., Gao, C., & Shen, J. (2007). Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis. Acta Biomaterialia, 3(5), 677-685. doi:10.1016/j.actbio.2007.04.007 es_ES
dc.description.references Liu, Fishman, M. L., Hicks, K. B., & Liu, C.-K. (2005). Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid). Journal of Agricultural and Food Chemistry, 53(23), 9017-9022. doi:10.1021/jf058083w es_ES
dc.description.references Gaona, L. A., Gómez Ribelles, J. L., Perilla, J. E., & Lebourg, M. (2012). Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction. Polymer Degradation and Stability, 97(9), 1621-1632. doi:10.1016/j.polymdegradstab.2012.06.031 es_ES
dc.description.references Ignat’eva, N. Y., Danilov, N. A., Averkiev, S. V., Obrezkova, M. V., Lunin, V. V., & Sobol’, E. N. (2007). Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. Journal of Analytical Chemistry, 62(1), 51-57. doi:10.1134/s106193480701011x es_ES
dc.description.references Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691 es_ES
dc.description.references Kister, G., Cassanas, G., & Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer, 39(2), 267-273. doi:10.1016/s0032-3861(97)00229-2 es_ES
dc.description.references Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435 es_ES
dc.description.references Causa, F., Battista, E., Della Moglie, R., Guarnieri, D., Iannone, M., & Netti, P. A. (2010). Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir, 26(12), 9875-9884. doi:10.1021/la100207q es_ES
dc.description.references Yuan, S., Xiong, G., Roguin, A., & Choong, C. (2012). Immobilization of Gelatin onto Poly(Glycidyl Methacrylate)-Grafted Polycaprolactone Substrates for Improved Cell–Material Interactions. Biointerphases, 7(1), 30. doi:10.1007/s13758-012-0030-1 es_ES
dc.description.references Santamaría, V. A., Deplaine, H., Mariggió, D., Villanueva-Molines, A. R., García-Aznar, J. M., Ribelles, J. L. G., … Ochoa, I. (2012). Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. Journal of Non-Crystalline Solids, 358(23), 3141-3149. doi:10.1016/j.jnoncrysol.2012.08.001 es_ES
dc.description.references Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. doi:10.1016/0021-9797(68)90272-5 es_ES
dc.description.references Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical Reviews, 90(1), 33-72. doi:10.1021/cr00099a003 es_ES
dc.description.references Pandis, C., Spanoudaki, A., Kyritsis, A., Pissis, P., Hernández, J. C. R., Gómez Ribelles, J. L., & Monleón Pradas, M. (2011). Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. Journal of Polymer Science Part B: Polymer Physics, 49(9), 657-668. doi:10.1002/polb.22225 es_ES
dc.description.references Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116-125. doi:10.1016/j.polymdegradstab.2009.11.045 es_ES
dc.description.references Mano, J. F., Gómez Ribelles, J. L., Alves, N. M., & Salmerón Sanchez, M. (2005). Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 46(19), 8258-8265. doi:10.1016/j.polymer.2005.06.096 es_ES
dc.description.references Wang, Y., Gómez Ribelles, J. L., Salmerón Sánchez, M., & Mano, J. F. (2005). Morphological Contributions to Glass Transition in Poly(l-lactic acid). Macromolecules, 38(11), 4712-4718. doi:10.1021/ma047934i es_ES
dc.description.references Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025 es_ES
dc.description.references E. Pérez-Román Bachelor Thesis 2014 es_ES
dc.description.references Shirosaki, Y., Tsuru, K., Hayakawa, S., Osaka, A., Lopes, M. A., Santos, J. D., & Fernandes, M. H. (2005). In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 26(5), 485-493. doi:10.1016/j.biomaterials.2004.02.056 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem