- -

Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Cruz, Dunia Mercedes es_ES
dc.contributor.author Sardinha, V. es_ES
dc.contributor.author Escobar Ivirico, Jorge Luis es_ES
dc.contributor.author Mano, J.F. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2016-05-17T07:30:27Z
dc.date.available 2016-05-17T07:30:27Z
dc.date.issued 2013-02
dc.identifier.issn 0957-4530
dc.identifier.uri http://hdl.handle.net/10251/64187
dc.description.abstract A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10 mu, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-beta 1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48 % of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-beta 1 loaded gelatin microparticle pellets was constant during the 21 days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-beta 1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-beta 1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue. es_ES
dc.description.sponsorship JLGR acknowledge the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01 (including the FEDER financial support). The support of the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative of the Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) is also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Journal of Materials Science: Materials in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject MESENCHYMAL STEM-CELLS es_ES
dc.subject IN-VITRO es_ES
dc.subject CONTROLLED-RELEASE es_ES
dc.subject CHONDROCYTE TRANSPLANTATION es_ES
dc.subject REGENERATIVE MEDICINE es_ES
dc.subject HYALURONIC-ACID es_ES
dc.subject GROWTH-FACTORS es_ES
dc.subject TISSUE es_ES
dc.subject HYDROGELS es_ES
dc.subject DELIVERY es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10856-012-4818-9
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation García Cruz, DM.; Sardinha, V.; Escobar Ivirico, JL.; Mano, J.; Gómez Ribelles, JL. (2013). Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. Journal of Materials Science: Materials in Medicine. 24(2):503-513. https://doi.org/10.1007/s10856-012-4818-9 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 503 es_ES
dc.description.upvformatpfin 513 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 260190 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Danisovic L, Varga I, Zamborsky R, Bohmer D. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med. 2012;237(1):10–7. es_ES
dc.description.references Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23:425–32. es_ES
dc.description.references Oliveira MB, Mano JF. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog. 2011;27(4):897–912. es_ES
dc.description.references Zhang R, Xue M, Yang J, Tan T. A novel injectable and in situ crosslinked hydrogel based on hyaluronic acid and α, β-polyaspartylhydrazide. J Appl Polym Sci. 2012;125(2):1116–26. es_ES
dc.description.references Hou Q, Chau DYS, Pratoomsoot C, Tighe PJ, Dua HS, Shakesheff KM, et al. In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine. J Pharm Sci. 2008;97(9):3972–80. es_ES
dc.description.references Singh A, Suri S, Roy K. In situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cells. Biomaterials. 2009;30(28):5187–200. es_ES
dc.description.references Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials. 2011;32(31):7897–904. es_ES
dc.description.references Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25(7–8):1339–48. es_ES
dc.description.references Fan HB, Zhang CL, Li J, Bi L, Qin L, Wu H, et al. Gelatin microspheres containing TGF-beta 3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules. 2008;9(3):927–34. es_ES
dc.description.references Han YS, Wei YY, Wang SS, Song Y. Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Jt Bone Spine. 2010;77(1):27–31. es_ES
dc.description.references Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28(21):3217–27. es_ES
dc.description.references Hu XH, Zhou J, Zhang N, Tan HP, Gao CY. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. J Mech Behav Biomed Mater. 2008;1(4):352–9. es_ES
dc.description.references Tan HP, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2499–506. es_ES
dc.description.references Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153–61. es_ES
dc.description.references Glattauer V, White JF, Tsai WB, Tsai CC, Tebb TA, Danon SJ, et al. Preparation of resorbable collagen-based beads for direct use in tissue engineering and cell therapy applications. J Biomed Mater Res Part A. 2010;92A(4):1301–9. es_ES
dc.description.references Pettersson S, Wettero J, Tengvall P, Kratz G. Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. J Tissue Eng Regen Med. 2009;3(6):450–60. es_ES
dc.description.references Fan HB, Hu YY, Qin L, Li XS, Wu H, Lv R. Porous gelatin–chondroitin–hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res Part A. 2006;77A(4):785–94. es_ES
dc.description.references García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez, Reis RL, et al. Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen Med. 2008;2(6):378–80. es_ES
dc.description.references Leane MM, Nankervis R, Smith A, Illum L. Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int J Pharm. 2004;271(1–2):241–9. es_ES
dc.description.references Pérez Olmedilla M, Garcia-Giralt N, Pradas MM, Ruiz PB, Gómez Ribelles JL, Palou EC, et al. Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials. 2006;27(7):1003–12. es_ES
dc.description.references Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia. 2010;6(3):1149–57. es_ES
dc.description.references Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Jt Surg Br Vol. 2005;87B(4):445–9. es_ES
dc.description.references Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol. 2006;57(1):3–8. es_ES
dc.description.references Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation—A review of recent developments. J Bone Jt Surg Am Vol. 2003;85A:109–15. es_ES
dc.description.references Martinez-Diaz S, Garcia-Giralt N, Lebourg M, Gomez-Tejedor JA, Vila G, Caceres E, et al. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med. 2010;38(3):509–19. es_ES
dc.description.references Pfander D, Rahmanzadeh R, Scheller EE. Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol. 1999;26:386–94. es_ES
dc.description.references Huch K, Mordstein V, Stove J, Nerlich AG, Arnholdt H, Delling G, et al. Expression of collagen type I, II, X and Ki-67 in osteochondroma compared to human growth plate cartilage. Eur J Histochem. 2002;46(3):249–58. es_ES
dc.description.references Gohring AR, Lubke C, Andreas K, Haupl T, Sittinger M, Ringe J, et al. Tissue-engineered cartilage of porcine and human origin as in vitro test system in arthritis research. Biotechnol Prog. 2010;26(4):1116–25. es_ES
dc.description.references Tritz J, Rahouadj R, de Isla N, Charif N, Pinzano A, Mainard D, et al. Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter. 2010;6(20):5165–74. es_ES
dc.description.references Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001;19(6):1098–104. es_ES
dc.description.references Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta 1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26(34):7095–103. doi: 10.1016/j.biomaterials.2005.05.083 . es_ES
dc.description.references Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell―Derived cells in arginine–glycine–aspartate―Modified hydrogels. Tissue Eng. 2006;12(9):2695–706. es_ES
dc.description.references Riley SL, Dutt S, de la Torre R, Chen AC, Sah RL, Ratcliffe A. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. J Mater Sci Mater Med. 2001;12(10):983–90. es_ES
dc.description.references Chao P-HG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G. Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;95B(1):84–90. es_ES
dc.description.references Nishi C, Nakajima N, Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res. 1995;29(7):829–34. es_ES
dc.description.references Wang C, Lau TT, Loh WL, Su K, Wang D-A. Cytocompatibility study of a natural biomaterial crosslinker—Genipin with therapeutic model cells. J Biomed Mater Res B Appl Biomater. 2011;97B(1):58–65. es_ES
dc.description.references Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, et al. Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res Part A. 2009;91A(3):692–700. es_ES
dc.description.references Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP. Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med. 2010;4(7):514–23. es_ES
dc.description.references Lau TT, Wang C, Wang D-A. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos Sci Technol. 2010;70(13):1909–14. es_ES
dc.description.references Solorio LD, Vieregge EL, Dhami CD, Dang PN, Alsberg E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-b1. J Controlled Release. 2012;158(2):224–32. es_ES
dc.description.references Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12(1):77–88. es_ES
dc.description.references Catelas I, Dwyer JF, Helgerson S. Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Eng Part C Method. 2008;14(2):119–28. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem