- -

Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ródenas Rochina, Joaquín es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lebourg, Myriam Annette Madeleine es_ES
dc.date.accessioned 2016-05-17T07:32:24Z
dc.date.available 2016-05-17T07:32:24Z
dc.date.issued 2013-05
dc.identifier.issn 0957-4530
dc.identifier.uri http://hdl.handle.net/10251/64188
dc.description.abstract The aim of this work is to compare the effect of hydroxyapatite (HAp) or bioglass (BG) nanoparticles in a polycaprolactone composite scaffold aimed to bone regeneration. To allow a comparison of the influence of both types of fillers, scaffolds made of PCL or composites containing up to 20 % by weight HAp or BG were obtained. Scaffolds showed acceptable mechanical properties for its use and high interconnected porosity apt for cellular colonization. To study the effect of the different materials on pre-osteoblast cells differentiation, samples with 5 % mineral reinforcement, were cultured for up to 28 days in osteogenic medium. Cells proliferated in all scaffolds. Nevertheless, differentiation levels for the selected markers were higher in pure PCL scaffolds than in the composites; inclusion of bioactive particles showed no positive effects on cell differentiation. In osteogenic culture conditions, the presence of bioactive particles is thus not necessary in order to observe good differentiation. es_ES
dc.description.sponsorship JLGR acknowledges the support of the Spanish Ministry of Science and Education through project No. MAT2010-21611-C03-01 (including the FEDER financial support), and from Generalitat Valenciana, ACOMP/2012/075 Project.. Lebourg acknowledges the support of UPV through Project PAID-O6-10 and thanks CIBER-BBN for funding her post-doc research. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. J. Rodenas acknowledges the funding of his PhD by the Generalitat Valenciana through VALi+d Grant. The authors also wish to thank the microscopy service of Universidad Politecnica de Valencia as well as the confocal microscopy service of the Research Centre Principe Felipe for useful help and advice. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Journal of Materials Science: Materials in Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject OSTEOBLAST-LIKE CELLS es_ES
dc.subject IN-VITRO es_ES
dc.subject PROTEIN ADSORPTION es_ES
dc.subject BIOACTIVE GLASS es_ES
dc.subject MC3T3-E1 CELLS es_ES
dc.subject MATRIX MINERALIZATION es_ES
dc.subject NANO-HYDROXYAPATITE es_ES
dc.subject POROUS SCAFFOLDS es_ES
dc.subject DIFFERENTIATION; EXPRESSION es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10856-013-4878-5
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F075/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Ródenas Rochina, J.; Gómez Ribelles, JL.; Lebourg, MAM. (2013). Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine. 24(5):1293-1308. https://doi.org/10.1007/s10856-013-4878-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10856-013-4878-5 es_ES
dc.description.upvformatpinicio 1293 es_ES
dc.description.upvformatpfin 1308 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 260203 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;11:4754–83. es_ES
dc.description.references Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11:18–25. es_ES
dc.description.references Shu R, McMullen R, Baumann MJ, McCabe LR. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. J Biomed Mater Res Part A. 2003;67A:1196–204. es_ES
dc.description.references Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules. 2007;8:2602–10. es_ES
dc.description.references Supova M. Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci Mater Med. 2009;20:1201–13. es_ES
dc.description.references Braye F, Irigaray JL, Jallot E, Oudadesse H, Weber G, Deschamps N, Deschamps C, Frayssinet P, Tourermet P, Tixier H, Terve S, Lefaivrell J, Amirabad A. Resorption kinetics of osseous substitute: natural coral and svnthetic hydroxyapatite. Biomaterials. 1996;17:1345–50. es_ES
dc.description.references Valerio P, Pereira MM, Goes AM, Leite FM. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25:2941–8. es_ES
dc.description.references Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32:127–35. es_ES
dc.description.references Lakshmi SN, Cato TL. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98. es_ES
dc.description.references Katsanevakis E, Wen X, Shi D, et al. Biomineralization of polymer scaffolds. Key Eng Mater. 2010;441:269–95. es_ES
dc.description.references Zhang K, Wang Y, Hillmyer MA, Francis LF. Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials. 2004;25:2489–500. es_ES
dc.description.references Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31. es_ES
dc.description.references Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res A. 2000;50:1549–3296. es_ES
dc.description.references Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 2000;54:284–93. es_ES
dc.description.references El-Ghannam A, Ducheyne P, Shapiro IM. Porous bioactive glass and hydroxyapatite ceramic affect bone cell function in vitro along different time lines. J Biomed Mater Res. 1998;36:167–80. es_ES
dc.description.references Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials. 2000;21:1121–7. es_ES
dc.description.references Woo KM, Seo J, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28:2622–30. es_ES
dc.description.references Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res. 2001;57:258–67. es_ES
dc.description.references Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–7. es_ES
dc.description.references Chuenjitkuntaworn B, Inrung W, Damrongsri D, Mekaapiruk K, Supaphol P, Pavasant P. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. J Biomed Mater Res A. 2010;94:241–51. es_ES
dc.description.references Lua Y, Zhu A, Wang W, Shi H. New bioactive hybrid material of nano-hydroxyapatite based on N-carboxyethylchitosan for bone tissue engineering. Appl Surf Sci. 2010;256:7228–33. es_ES
dc.description.references Teng S, Chen L, Guo Y, Shi J. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. J Inorg Biochem. 2007;101:686–91. es_ES
dc.description.references Li Z, Yubao L, Aiping Y, Xulein P, Xuejiang W, Xiang Z. Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J Mater Sci Mater Med. 2005;16:213–9. es_ES
dc.description.references Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci. 2010;35:403–40. es_ES
dc.description.references Martin C, Winet H, Baot JY. Acidity near eroding polylactide–polyglycolide in vitro and in vivo in rabbit tibial bone chambers. Biomaterials. 1996;17:2373–80. es_ES
dc.description.references Diba M, Kharaziha M, Fathi MH, Gholipourmalekabadi M, Samadikuchaksaraei A. Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos Sci Technol. 2012;72:716–23. es_ES
dc.description.references Rizzi SC, Heath DJ, Coombes AGA, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 2001;55:475–86. es_ES
dc.description.references Fabbri P, Cannillo V, Sola A, Dorigato A, Chiellini F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Compos Sci Technol. 2011;70:1869–78. es_ES
dc.description.references Cannillo V, Chiellini F, Fabbri P, Sola A. Production of Bioglass® 45S5–polycaprolactone composite scaffolds via salt-leaching. Compos struct. 2010;92:1823–32. es_ES
dc.description.references Deb S, Mandegaran R, Di Silvio L. A porous scaffold for bone tissue engineering/45S5 Bioglass® derived porous scaffolds for co-culturing osteoblasts and endothelial cells. J Mater Sci Mater Med. 2010;21:893–905. es_ES
dc.description.references Lebourg M, Suay Antón J, Gomez Ribelles JL. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med. 2010;21:33–44. es_ES
dc.description.references Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, Wang D-M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25:129–38. es_ES
dc.description.references Storrie H, Stupp SI. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activity and biomineralization. Biomaterials. 2005;26:5492–9. es_ES
dc.description.references Meloan SN, Puchtler H. Chemical mechanisms of staining methods: von Kossa’s technique. What von Kossa really wrote and a modified reaction for selective demonstration of inorganic phosphate. J Histotechnol. 1985;8:11–3. es_ES
dc.description.references Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA, de Groot K. Osteoinduction by biomaterials-physicochemical and structural influences. J Biomed Mater Res A. 2006;77A:747–62. es_ES
dc.description.references Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9. es_ES
dc.description.references Li X, van Blitterswijk CA, Feng Q, Cui F, Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials. 2008;29:3306–16. es_ES
dc.description.references Denis FA, Hanarp P, Sutherland DS, Gold J, Mustin C, Rouxhet PG, Dufrêne YF. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir. 2002;18:819–28. es_ES
dc.description.references Galli C, Coen MC, Hauert R, Katanaev VL, Gröning P, Schlapbach L. Creation of nanostructures to study the topographical dependency of protein adsorption. Colloids Surf B Biointerfaces. 2002;26:255–67. es_ES
dc.description.references Cai L, Guinn AS, Wang S. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Acta Biomater. 2011;7:2185–99. es_ES
dc.description.references Pitt CG, Zhong-wei G. Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state. J Control Release. 1987;4(4):283–92. es_ES
dc.description.references Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem. 1998;68:83–9. es_ES
dc.description.references Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57. es_ES
dc.description.references Lee HJ, Kim SE, Choi HW, Kim CW, Kim KJ, Lee SC. The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. Eur Polym J. 2007;43:1602–8. es_ES
dc.description.references Verrier S, Blaker JJ, Maquet V, Hencha LL, Boccaccini AR. PDLLA/bioglass composites for soft-tissue and hard tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004;25:3013–21. es_ES
dc.description.references Lian JB, Stein GS. Concepts of osteoblast growth osteoblast growth and differentiation: modulation of bone cell development and tissue formation. Critical Rev Oral Biol Med. 1992;3(3):269–305. es_ES
dc.description.references Choi JY, lee BH, Song KB, Park RW, Kim IS, Sohn KY, Jo JS, Ryoo HM. Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J Cell Biochem. 1996;61:609–18. es_ES
dc.description.references Al-Jallad HF, Nakano Y, Chen JLY, McMillan E, Lefebvre C, Kaartinen MT. Transglutaminase activity regulates osteoblast differentiation and matrix mineralization in MC3T3-E1 osteoblast cultures. Matrix Biol. 2006;25:135–48. es_ES
dc.description.references Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, Marshall GW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomater. 2009;5:3536–47. es_ES
dc.description.references Foppiano S, Marshall SJ, Marshall GW, Saiz E, Tomsia AP. Bioactive glass coatings affect the behavior of osteoblast-like cells. Acta Biomater. 2007;3:765–71. es_ES
dc.description.references Reilly GC, Radin S, Chen AT, Ducheyne P. Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials. 2007;28:4091–7. es_ES
dc.description.references Li LH, Kommareddy KP, Pilz C, Zhou CR, Fratzl P, Manjubala I. In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomater. 2010;6:2525–31. es_ES
dc.description.references Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C. Implant surface roughness affects osteoblast gene expression. J Dent Res. 2003;82:372–6. es_ES
dc.description.references Alliot-Licht B, Gregoire M, Orly I, Menanteau J. Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. Biomaterials. 1991;12:752–6. es_ES
dc.description.references Prigodich RV, Vesely MR. Characterization of the complex between bovine osteocalcin and type I collagen. Arch Biochem Biophys. 1997;345(2):339–41. es_ES
dc.description.references Wenstrup RJ, Fowlkes JL, Wittei DP, Florer JB. Discordant expression of osteoblast markers in MC3T3-E1 cells that synthesize a high turnover matrix. J Biol Chem. 1996;271(17):10271–6. es_ES
dc.description.references Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res. 1994;9:843–54. es_ES
dc.description.references Bonewald LF. Cell–cell and cell–matrix interactions in bone. In: Bradshaw RA, Dennis EA, editors. Handbook of Cell Signaling (Second Edition). Elsevier Academic Press; 2009. pp 109-124. es_ES
dc.description.references Xu L, Anderson AL, Lu Q, Wang J. Role of fibrillar structure of collagenous carrier in bone sialoprotein-mediated matrix mineralization and osteoblast differentiation. Biomaterials. 2007;28:750–61. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem