- -

Cryptic diversity in Brevipalpus mites (Tenuipalpidae)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cryptic diversity in Brevipalpus mites (Tenuipalpidae)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navia, Denise es_ES
dc.contributor.author Mendonca, Renata S. es_ES
dc.contributor.author Ferragut Pérez, Francisco José es_ES
dc.contributor.author Miranda, Leticia C. es_ES
dc.contributor.author Trincado, Roberto C. es_ES
dc.contributor.author Michaux, Johan es_ES
dc.contributor.author Navajas, Maria es_ES
dc.date.accessioned 2016-05-18T15:02:06Z
dc.date.available 2016-05-18T15:02:06Z
dc.date.issued 2013-07
dc.identifier.issn 0300-3256
dc.identifier.uri http://hdl.handle.net/10251/64330
dc.description.abstract Defining the taxonomic identity of organisms is a prerequisite for their study, and in the case of economically important species, misidentification may lead to the application of inappropriate prevention and control strategies. Flat mites of the Brevipalpus genus include several crop pests and the systematics of these mites represents a challenge for acarologists. Many of the most economically important Brevipalpus species have repeatedly been inaccurately identified. Such problematic classification has been attributed to the likely occurrence of cryptic species in the genus. In this study, we used an integrative approach that combined molecular analyses, including sequence-based species delimitation, with detailed morphological identification using traits that have recently showed to be taxonomically informative. Sequences of mitochondrial cytochrome c oxidase subunit I (COI) were obtained from individuals collected from host plants belonging to 14 genera and 13 families across 29 locations in the Americas (Brazil, Chile, USA). The phylogenetic analyses included previously published Brevipalpus sequences from GenBank, and the final data set was classified into 44 haplotypes. Six putative species were recognised by COI-based species delimitation analysis, and morphological evidence supported each of these species. The integrative approach revealed the occurrence of cryptic species in the Brevipalpus genus and contributed to the clarification of previously noted incongruences. The results presented here allow for the evaluation of taxonomic characteristics in a phylogenetic context and indicate new characters for the differentiation of Brevipalpus species. In addition, Brevipalpus incognitus n. sp. Ferragut & Navia, a cryptic species detected in this study, is described based on morphological and molecular traits. Implications of the advances in Brevipalpus systematics presented herein with respect to pest management are briefly discussed. es_ES
dc.description.sponsorship We sincerely thank Dalva L. de Queiroz Santana, Embrapa Florestas, Colombo, Parana; Aloyseia Noronha, Eduardo Chumbinho de Andrade, Juliana Freitas-Astua and Francisco F. L. Barbosa, Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia; Alberto Luiz Marsaro Jr, Embrapa Roraima, Boa Vista, Roraima; Ricardo Adaime da Silva, Embrapa Amapa, Macapa, Amapa; Patricia Maria Drumond, Embrapa Acre, Rio Branco, Acre; Manoel Guedes C. Gondim Jr and Aleuny C. Reis, Universidade Federal Rural de Pernambuco, Recife, Pernambuco; Jose. C. M. Poderoso, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, all from Brazil; and Jose Carlos V. Rodrigues, University of Puerto Rico, San Juan, Puerto Rico, for their help with sampling; Tatiane G. C. M. Galasso, Brazil, for help with extensive laboratory work. We also thank Maries Pages and Fabien Condamine, INRA, UMR CBGP, France, for their help concerning the Pons analysis. This study was funded by Brazil - National Council for Scientific and Technological Development (CNPq) (call CNPq/MAPA/SDA No 064/2008, grant 578353/2008-3), Embrapa Macroprograma 3 and Fundacao de Apoio a Pesquisa do Distrito Federal (FAP-DF). Authors DN and RSM are also grateful to CNPq for the research and pos-doc fellowships, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof Zoologica Scripta es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Phoenicis acari es_ES
dc.subject Species delimitation es_ES
dc.subject Nucleotide-sequences es_ES
dc.subject Cardinium symbionts es_ES
dc.subject Maximum-likelihood es_ES
dc.subject B-obovatus es_ES
dc.subject DNA es_ES
dc.subject Mitochondrial es_ES
dc.subject Californicus es_ES
dc.subject Taxonomy es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Cryptic diversity in Brevipalpus mites (Tenuipalpidae) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/zsc.12013
dc.relation.projectID info:eu-repo/grantAgreement/CNPq/578353%2F2008/BR es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq/064%2F2008/BR
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Navia, D.; Mendonca, RS.; Ferragut Pérez, FJ.; Miranda, LC.; Trincado, RC.; Michaux, J.; Navajas, M. (2013). Cryptic diversity in Brevipalpus mites (Tenuipalpidae). Zoologica Scripta. 42(4):406-426. doi:10.1111/zsc.12013 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/zsc.12013 es_ES
dc.description.upvformatpinicio 406 es_ES
dc.description.upvformatpfin 426 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 258472 es_ES
dc.contributor.funder Fundação de Apoio à Pesquisa do Distrito Federal es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Ahrens, D., Monaghan, M. T., & Vogler, A. P. (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution, 44(1), 436-449. doi:10.1016/j.ympev.2007.02.024 es_ES
dc.description.references Anisimova, M., & Gascuel, O. (2006). Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Systematic Biology, 55(4), 539-552. doi:10.1080/10635150600755453 es_ES
dc.description.references Armstrong, K. ., & Ball, S. . (2005). DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1813-1823. doi:10.1098/rstb.2005.1713 es_ES
dc.description.references Baker, E. W. (1949). The Genus Brevipalpus (Acarina: Pseudoleptidae). American Midland Naturalist, 42(2), 350. doi:10.2307/2422013 es_ES
dc.description.references Baker , E. W. Tuttle , D. M. 1987 The false spider mites of Mexico (Tenuipalpidae: Acari) 1 236 es_ES
dc.description.references Baker, E. W., Tuttle, D. M., & Abbatiello, M. (1975). The false spider mites of northwestern and north central Mexico (Acarina, Tenuipalpidae). Smithsonian Contributions to Zoology, (194), 1-23. doi:10.5479/si.00810282.194 es_ES
dc.description.references Beard , J. J. Ochoa , R. Redford , A. J. Trice , M. D. Walters , T. W. Mitter , C. 2012 Flat mites of the World - Part I Raoiella and Brevipalpus Fort Collins, CO, USA http://idtools.org/id/mites/flatmites/ es_ES
dc.description.references Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148-155. doi:10.1016/j.tree.2006.11.004 es_ES
dc.description.references Calcagno, V., Bonhomme, V., Thomas, Y., Singer, M. C., & Bourguet, D. (2010). Divergence in behaviour between the European corn borer, Ostrinia nubilalis , and its sibling species Ostrinia scapulalis  : adaptation to human harvesting? Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2703-2709. doi:10.1098/rspb.2010.0433 es_ES
dc.description.references Chagas, C. M., Kitajima, E. W., & Rodrigues, J. C. V. (2003). Coffee Ringspot Virus Vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in Coffee. Experimental and Applied Acarology, 30(1-3), 203-213. doi:10.1023/b:appa.0000006549.87310.41 es_ES
dc.description.references Childers, C. C., & Derrick, K. S. (2003). Brevipalpus Mites as Vectors of Unassigned Rhabdoviruses in Various Crops. Experimental and Applied Acarology, 30(1-3), 1-3. doi:10.1023/b:appa.0000006542.96404.63 es_ES
dc.description.references Childers, C. C., French, J. V., & Rodrigues, J. C. V. (2003). Brevipalpus californicus, B. obovatus, B. phoenicis, and B. lewisi (Acari: Tenuipalpidae): a Review of their Biology, Feeding Injury and Economic Importance. Experimental and Applied Acarology, 30(1-3), 5-28. doi:10.1023/b:appa.0000006543.34042.b4 es_ES
dc.description.references Childers, C. C., Rodrigues, J. C. V., & Welbourn, W. C. (2003). Host Plants of Brevipalpus californicus, B. obovatus, and B. phoenicis (Acari: Tenuipalpidae) and their Potential Involvement in the Spread of Viral Diseases Vectored by these Mites. Experimental and Applied Acarology, 30(1-3), 29-105. doi:10.1023/b:appa.0000006544.10072.01 es_ES
dc.description.references Clarke, A. R., & Walter, G. H. (1995). «Strains» and the classical biological control of insect pests. Canadian Journal of Zoology, 73(10), 1777-1790. doi:10.1139/z95-210 es_ES
dc.description.references Leon, D. D. (1956). Six New False Spider Mites from Southern Florida (Acarina: Tenuipalpidae). The Florida Entomologist, 39(2), 55. doi:10.2307/3492208 es_ES
dc.description.references Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server), W465-W469. doi:10.1093/nar/gkn180 es_ES
dc.description.references Evans, G. A., Cromroy, H. L., & Ochoa, R. (1993). The Tenuipalpidae of Honduras (Tenuipalpidae: Acari). The Florida Entomologist, 76(1), 126. doi:10.2307/3496021 es_ES
dc.description.references FONTANETO, D., BOSCHETTI, C., & RICCI, C. (2008). Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology, 21(2), 580-587. doi:10.1111/j.1420-9101.2007.01472.x es_ES
dc.description.references Groot, T. V. M., & Breeuwer, J. A. J. (2006). Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Experimental and Applied Acarology, 39(3-4), 257-271. doi:10.1007/s10493-006-9019-0 es_ES
dc.description.references Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696-704. doi:10.1080/10635150390235520 es_ES
dc.description.references Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). doi:10.1098/rsbl.2003.0025 es_ES
dc.description.references Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812-14817. doi:10.1073/pnas.0406166101 es_ES
dc.description.references Henry, C. S., & Wells, M. M. (2010). Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Animal Behaviour, 80(6), 991-1003. doi:10.1016/j.anbehav.2010.08.021 es_ES
dc.description.references Hoy, M. A. (2016). Agricultural Acarology. doi:10.1201/b10909 es_ES
dc.description.references Jousselin, E., Desdevises, Y., & Coeur d’acier, A. (2008). Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola  : bacterial genome helps define species and evolutionary relationships in aphids. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 187-196. doi:10.1098/rspb.2008.0679 es_ES
dc.description.references Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581 es_ES
dc.description.references Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78(1), 454-458. doi:10.1073/pnas.78.1.454 es_ES
dc.description.references Kitajima, E. W., Chagas, C. M., & Rodrigues, J. C. V. (2003). Brevipalpus-Transmitted Plant Virus and Virus-Like Diseases: Cytopathology and Some Recent Cases. Experimental and Applied Acarology, 30(1-3), 135-160. doi:10.1023/b:appa.0000006546.55305.e3 es_ES
dc.description.references Kitajima, E. W., Groot, T. V. M., Novelli, V. M., Freitas-Astúa, J., Alberti, G., & de Moraes, G. J. (2007). In situ observation of the Cardinium symbionts of Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Experimental and Applied Acarology, 42(4), 263-271. doi:10.1007/s10493-007-9090-1 es_ES
dc.description.references Kitajima, E. W., Rodrigues, J. C. V., & Freitas-Astua, J. (2010). An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Scientia Agricola, 67(3), 348-371. doi:10.1590/s0103-90162010000300014 es_ES
dc.description.references Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187 es_ES
dc.description.references Lynch, M. (2006). Mutation Pressure and the Evolution of Organelle Genomic Architecture. Science, 311(5768), 1727-1730. doi:10.1126/science.1118884 es_ES
dc.description.references Maddison , W. P. Maddison , D. R. 2011 Mesquite: a modular system for evolutionary analysis http://mesquiteproject.org es_ES
dc.description.references De Mendonça, R. S., Navia, D., Diniz, I. R., Auger, P., & Navajas, M. (2011). A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases. Experimental and Applied Acarology, 55(1), 1-23. doi:10.1007/s10493-011-9453-5 es_ES
dc.description.references MESA, N. C., OCHOA, R., WELBOURN, W. C., EVANS, G. A., & DE MORAES, G. J. (2009). A catalog of the Tenuipalpidae (Acari) of the World with a key to genera. Zootaxa, 2098(1), 1-185. doi:10.11646/zootaxa.2098.1.1 es_ES
dc.description.references Navajas, M., Lagnel, J., Gutierrez, J., & Boursot, P. (1998). Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 80(6), 742-752. doi:10.1046/j.1365-2540.1998.00349.x es_ES
dc.description.references Ochoa , R. C. 1985 Reconocimento preliminar de los ácaros fitoparásitos del género Brevipalpus (Acari: Tenuipalpidae) en Costa Rica Facultad Agronomia, Universidad de Costa Rica 124 es_ES
dc.description.references Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., … Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. doi:10.1186/1471-2148-10-184 es_ES
dc.description.references Paterson, H. E. H. (1991). The Recognition of Cryptic Species Among Economically Important Insects. Heliothis: Research Methods and Prospects, 1-10. doi:10.1007/978-1-4612-3016-8_1 es_ES
dc.description.references Pfenninger, M., & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7(1), 121. doi:10.1186/1471-2148-7-121 es_ES
dc.description.references Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., … Vogler, A. P. (2006). Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 55(4), 595-609. doi:10.1080/10635150600852011 es_ES
dc.description.references Posada, D. (2006). ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research, 34(Web Server), W700-W703. doi:10.1093/nar/gkl042 es_ES
dc.description.references Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9), 817-818. doi:10.1093/bioinformatics/14.9.817 es_ES
dc.description.references Rodrigues, J. C. V., Kitajima, E. W., Childers, C. C., & Chagas, C. M. (2003). Citrus Leprosis Virus Vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on Citrus in Brazil. Experimental and Applied Acarology, 30(1-3), 161-179. doi:10.1023/b:appa.0000006547.76802.6e es_ES
dc.description.references Rodrigues, J. C. V., Gallo-meagher, M., Ochoa, R., Childers, C. C., & Adams, B. J. (2004). Mitochondrial DNA and RAPD polymorphisms in the haploid mite Brevipalpus phoenicis (Acari: Tenuipalpidae). Experimental and Applied Acarology, 34(3-4), 275-290. doi:10.1007/s10493-004-0571-1 es_ES
dc.description.references Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. doi:10.1093/bioinformatics/btg180 es_ES
dc.description.references Ros, V. I. D., & Breeuwer, J. A. J. (2007). Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental and Applied Acarology, 42(4), 239-262. doi:10.1007/s10493-007-9092-z es_ES
dc.description.references Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology, 55(1), 421-438. doi:10.1146/annurev-ento-112408-085432 es_ES
dc.description.references SEEMAN, O. D., & BEARD, J. J. (2011). A new species of <em>Aegyptobia</em> (Acari: Tenuipalpidae) from Myrtaceae in Australia. Systematic and Applied Acarology, 16(1), 73. doi:10.11158/saa.16.1.10 es_ES
dc.description.references Shimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 17(12), 1246-1247. doi:10.1093/bioinformatics/17.12.1246 es_ES
dc.description.references Sites, J. W., & Marshall, J. C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution, 18(9), 462-470. doi:10.1016/s0169-5347(03)00184-8 es_ES
dc.description.references Skoracka, A., & Dabert, M. (2009). The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research, 100(3), 263-272. doi:10.1017/s0007485309990216 es_ES
dc.description.references Skoracka, A., Kuczyński, L., Santos de Mendonça, R., Dabert, M., Szydło, W., Knihinicki, D., … Navia, D. (2012). Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari : Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebrate Systematics, 26(4), 417. doi:10.1071/is11037 es_ES
dc.description.references Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references THIERRY, M., BECKER, N., HAJRI, A., REYNAUD, B., LETT, J.-M., & DELATTE, H. (2011). Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Molecular Ecology, 20(10), 2172-2187. doi:10.1111/j.1365-294x.2011.05087.x es_ES
dc.description.references Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 es_ES
dc.description.references Vala, F., Breeuwer, J. A. J., & Sabelis, M. W. (2000). Wolbachia –induced ‘hybrid breakdown’ in the two–fspotted spider mite Tetranychus urticae Koch. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1931-1937. doi:10.1098/rspb.2000.1232 es_ES
dc.description.references Weeks, A. R. (2001). A Mite Species That Consists Entirely of Haploid Females. Science, 292(5526), 2479-2482. doi:10.1126/science.1060411 es_ES
dc.description.references Welbourn, W. C., Ochoa, R., Kane, E. C., & Erbe, E. F. (2003). Morphological Observations on Brevipalpus phoenicis (Acari: Tenuipalpidae) Including Comparisons with B. californicus and B. obovatus. Experimental and Applied Acarology, 30(1-3), 107-133. doi:10.1023/b:appa.0000006545.40017.a0 es_ES
dc.description.references Wiens, J. J. (2007). Species Delimitation: New Approaches for Discovering Diversity. Systematic Biology, 56(6), 875-878. doi:10.1080/10635150701748506 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem