- -

Deployment and Performance Study of an Ad Hoc Network Protocol for Intelligent Video Sensing in Precision Agriculture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deployment and Performance Study of an Ad Hoc Network Protocol for Intelligent Video Sensing in Precision Agriculture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cambra, Carlos es_ES
dc.contributor.author Díaz Santos, Juan Ramón es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2016-05-27T14:41:38Z
dc.date.available 2016-05-27T14:41:38Z
dc.date.issued 2015-02-10
dc.identifier.isbn 978-366246337-6
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/64863
dc.description 13th International Conference on Ad-hoc Networks and Wireless, ADHOC-NOW 2014 accompanied by 2nd International Workshop on Emerging Technologies for Smart Devices, ETSD 2014, 2nd International Workshop on Marine Sensors and Systems, MARSS 2014, Multimedia Wireless ad hoc Networks, MWaoN 2014, Security in Ad Hoc Networks, SecAN 2014, 2nd Smart Sensor Protocols and Algorithms, SSPA 2014 and 8th International Workshop on Wireless Sensor, Actuator and Robot Networks, WiSARN 2014; Benidorm; Spain; 22 June 2014 through 27 June 2014 es_ES
dc.description.abstract Recent advances in technology applied to agriculture have made possible the Precision Agriculture (PA). It has been widely demonstrated that precision agriculture provides higher productivity with lower costs. The goal of this paper is to show the deployment of a real-time precision sprayer which uses video sensing captured by lightweight UAVs (unmanned aerial vehicles) forming ad hoc network. It is based on a geo-reference system that takes into account weeds inside of a mapped area. The ad hoc network includes devices such as AR Drones, a laptop and a sprayer in a tractor. The experiment was carried out in a corn field with different locations selected to represent the diverse densities of weeds that can be found in the field. The deployed system allows saving high percentage of herbicide, reducing the cost spent in fertilizers and increasing the quality of the product. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany): LNCS es_ES
dc.relation.ispartof Lecture Notes in Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject UAV es_ES
dc.subject Precision agriculture es_ES
dc.subject Video sensing es_ES
dc.subject Geo-references es_ES
dc.subject Weeds es_ES
dc.subject Ad Hoc Network Protocol es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Deployment and Performance Study of an Ad Hoc Network Protocol for Intelligent Video Sensing in Precision Agriculture es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-662-46338-3_14
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Cambra, C.; Díaz Santos, JR.; Lloret, J. (2015). Deployment and Performance Study of an Ad Hoc Network Protocol for Intelligent Video Sensing in Precision Agriculture. Lecture Notes in Computer Science. 8629:165-175. doi:10.1007/978-3-662-46338-3_14 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename ADHOC-NOW 2014 International Workshops ETSD, MARSS, MWaoN, SecAN, SSPA, and WiSARN
dc.relation.conferencedate June 22–27, 2014
dc.relation.conferenceplace Benidorm, Spain
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-662-46338-3_14 es_ES
dc.description.upvformatpinicio 165 es_ES
dc.description.upvformatpfin 175 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8629 es_ES
dc.relation.senia 310861 es_ES
dc.description.references Garcia, M., Coll, H., Bri, D., Lloret, J.: Using MANET protocols in wireless sensor and actor networks. In: The Second International Conference on Sensor Technologies and Applications (SENSORCOMM 2008), Cap Esterel, France, 25–31 August 2008 es_ES
dc.description.references Garcia, M., Bri, D., Sendra, S., Lloret, J.: Practical deployments of wireless sensor networks: a survey. J. Adv. Netw. Serv. 3(1&2), 170–185 (2010) es_ES
dc.description.references Bri, D., Garcia, M., Lloret, J., Dini, P.: Real deployments of wireless sensor networks. In: The Third International Conference on Sensor Technologies and Applications (Sensorcomm 2009), Atenas (Grecia), 18–23 June 2009 es_ES
dc.description.references Lloret, J., Palau, C., Boronat, F., Tomas, J.: Improving networks using group-based topologies. Comput. Commun. 31(14), 3438–3450 (2008) es_ES
dc.description.references Lopes, P., Salvador, P., Nogueira, A.: Methodologies for network topology discovery and detection of MAC and IP spoofing attacks. Netw. Protoc. Algorithms 5(3), 153–197 (2013) es_ES
dc.description.references Liu, Y., Xu, B.: Energy-efficient distributed multi-sensor scheduling based on energy balance in wireless sensor networks. Adhoc Sens. Wirel. Netw. 20(3–4), 307–328 (2014) es_ES
dc.description.references Liao, Z., Wang, J., Zhang, S., Zhang, X.: A deterministic sensor placement scheme for full coverage and connectivity without boundary effect in wireless sensor networks. Adhoc Sens. Wirel. Netw. 19(3–4), 327–351 (2013) es_ES
dc.description.references Karim, L., Anpalagan, A., Nasser, N., Almhana, J.: Sensor-based M2 M agriculture monitoring systems for developing countries: state and challenges. Netw. Protoc. Algorithms 5(3), 68–86 (2013) es_ES
dc.description.references Lloret, J., Bosch, I., Sendra, S., Serrano, A.: A wireless sensor network for vineyard monitoring that uses image processing. Sensors 11(6), 6165–6196 (2011) es_ES
dc.description.references European Commission, Overview of Common Agricultural Policy (CAP) Reform 2014–2020. http://ec.europa.eu/agriculture/policy-perspectives/policy-briefs/05_en.pdf (December 2013). Accessed 18 March 2014 es_ES
dc.description.references Cambra Baseca, C., Diaz, J. R., Lloret, J.: Communication Ad Hoc protocol for intelligent video sensing using AR drones. In: IEEE Ninth International Conference on Mobile Ad-hoc and Sensor Networks (MSN 2013), Dalian (China), 11–25 December 2013 es_ES
dc.description.references Koger, C.H., Shaw, D.R., Watson, C.E., Reddy, K.N.: Detecting late-season weed infestations in soybean (Glycine max). Weed Technol 17, 696–704 (2003) es_ES
dc.description.references Zhang, C., Kovacs, J.: The application of small unmanned aerial systems for precision agriculture: a review. Prec Agric 13, 693–712 (2012) es_ES
dc.description.references Christensen, S., Sogaard, H.T., Kudsk, P., Norremark, M., Lund, I., Nadimi, E.S.: Site-specific weed control technologies. Weed Res. 49(3), 233–241 (2009) es_ES
dc.description.references Slaughter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61, 63–78 (2008) es_ES
dc.description.references Canales Compes, M., Gallego Martinez, J.R., Hernández Solana, A., Valdovinos Bardaji, A.: QoS provision in mobile Ad Hoc Networks with an adaptive cross-layer architecture. ACM/Springer Wirel. Netw. 15(8), 1165–1187 (2009) es_ES
dc.description.references Kang, D.S., Griswold, N.C., Kehtarnavaz, N.: An invariant traffic sign recognition system based on sequential color processing and geometrical transformation. In: IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 88–93, 21–24 April 1994 es_ES
dc.description.references Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009) es_ES
dc.description.references Krajnık, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011) es_ES
dc.description.references MAVLink Micro Air Vehicle Communication Protocol. http://qgroundcontrol.org/mavlink/start es_ES
dc.description.references Rosati, S., Krizélecki, K., Traynard, L., Rimoldi, B.: Speed-aware routing for UAV Ad-Hoc networks. mobile communications laboratory. In: École Polytechnique Féderale de Laussane (EPFL), Laussane, Switzerland es_ES
dc.description.references FFmpeg multimedia framework. http://www.ffmpeg.org/ (2014). Accessed 18 March 2014 es_ES
dc.description.references Open Source Computer Vision Library. http://opencv.org/ (2014). Accessed 18 March 2014 es_ES
dc.description.references Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision With the OpenCV Library, p. 580. O’Reilly Media, Inc., Cambridge, September 2008 es_ES
dc.description.references Suganthe, R.C., Balasubramanie, P.: Improving QoS in delay tolerant mobile Ad Hoc network using multiple message ferries. Netw. Protoc. Algorithms 3(4), 32–53 (2011) es_ES
dc.description.references Chalouf, M.A., Mbarek, N., Krief, F.: Quality of Service and security negotiation for autonomous management of next generation networks. Netw. Protoc. Algorithms 3(2), 54–86 (2011) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem