- -

Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films

Mostrar el registro completo del ítem

Cerqueira Barros, S.; Alves Da Silva, A.; Barbosa Costa, D.; Costa, CM.; Lanceros-Mendez, S.; Tamano Maciavello, M.; Gómez Ribelles, JL.... (2015). Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films. Cellulose. 22(3):1911-1929. https://doi.org/10.1007/s10570-015-0603-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65085

Ficheros en el ítem

Metadatos del ítem

Título: Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films
Autor: Cerqueira Barros, Sandra Alves da Silva, Ana Barbosa Costa, Diana Costa, Carlos M Lanceros-Mendez, Senentxu Tamano Maciavello, M.N. Gómez Ribelles, José Luís Sentanin, Franciani Pawlicka, Agnieszka Silva, Maria Manuela
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
Hydrogels are high water content materials prepared by polymer crosslinking that are able to release active species, such as therapeutic, antibacterial, antiperspirant and moisturising agents, and fragrances. In recent ...[+]
Palabras clave: Chitosan , (Hydroxypropyl)methyl cellulose , Thermal analysis , Rheological studies
Derechos de uso: Reserva de todos los derechos
Fuente:
Cellulose. (issn: 0969-0239 ) (eissn: 1572-882X )
DOI: 10.1007/s10570-015-0603-5
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/s10570-015-0603-5
Código del Proyecto:
info:eu-repo/grantAgreement/Uminho//Pest-C/QUI/UI0686/2013/
...[+]
info:eu-repo/grantAgreement/Uminho//Pest-C/QUI/UI0686/2013/
info:eu-repo/grantAgreement/FCT/COMPETE/132974/PT/Strategic Project - UI 607 - 2013-2014/
info:eu-repo/grantAgreement/Uminho//PEST-C/FIS/UI607/2013/
info:eu-repo/grantAgreement/FCT/COMPETE/132953/PT/Strategic Project - UI 686 - 2013-2014/
info:eu-repo/grantAgreement/FCT//SFRH/BPD/85399/2012/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/85399/2012/PT/
info:eu-repo/grantAgreement/FCT//SFRH/BD/68499/2010/
info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BD/68499/2010/PT/
[-]
Agradecimientos:
The authors are thankful to the Chemistry and Physic Centres at Minho University (Pest-C/QUI/UI0686/2013 and PEST-C/FIS/UI607/2013), CNPq, FAPESP and CAPES for the financial support of this research. Sandra Cerqueira Barros ...[+]
Tipo: Artículo

References

Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171. doi: 10.1016/j.addr.2013.04.016

Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657. doi: 10.1016/0142-9612(96)87644-7

Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN (2007) Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal 43:549–557. doi: 10.1016/j.jpba.2006.08.014 [+]
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171. doi: 10.1016/j.addr.2013.04.016

Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657. doi: 10.1016/0142-9612(96)87644-7

Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN (2007) Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal 43:549–557. doi: 10.1016/j.jpba.2006.08.014

Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C (2005) Preparation of chitosan beads by simultaneous cross-linking/insolubilization in basic pH: rheological optimisation and drug loading/release behaviour. Eur J Pharm Sci 24:77–84. doi: 10.1016/j.ejps.2004.09.013

Barros SC et al (2014) Thermo-sensitive chitosan–cellulose hydrogels: swelling behaviour and morphologic studies. Cellulose 21:4531–4544. doi: 10.1007/s10570-014-0442-9

Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. doi: 10.1016/j.addr.2009.07.019

Cervera MF et al (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58:401–408. doi: 10.1016/j.carbpol.2004.08.017

Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi: 10.1016/j.carbpol.2010.12.023

Chen L, Tang C-y, Ning N-y, Wang C-y, Fu Q, Zhang Q (2009) Preparation and properties of chitosan/lignin composite films. Chin J Polym Sci 27:739–746. doi: 10.1142/S0256767909004448

Cursaru B, Stanescu PO, Teodorescu M (2010) The states of water in hydrogels synthesized from diepoxy-terminated poly/ethylene glycol)s and aliphatic polyamines. UPB Sci Bull, Series B 72:99–114

De Lima MSP, Freire MS, Fonseca JLC, Pereira MR (2009) Chitosan membranes modified by contact with poly(acrylic acid). Carbohydr Res 344:1709–1715. doi: 10.1016/j.carres.2009.05.024

Dhawade PP, Jagtap RN (2012) Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res 3:1372–1382

Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558. doi: 10.1002/app.20630

Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5

El-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH (2010) Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem 34:47–56. doi: 10.3906/kim-0901-38

Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179:209–228. doi: 10.1016/S0378-5173(98)00339-1

Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598. doi: 10.1016/S0142-9612(00)00126-5

Guinesi LS, Cavalheiro ÉTG (2006) The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta 444:128–133. doi: 10.1016/j.tca.2006.03.003

Gulrez SKH, Al-Assaf S, O Phillips G (2011) Hydrogels: methods of preparation, characterisation and applications. Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech. doi: 10.5772/24553

Hino T, Ford JL (2001) Characterization of the hydroxypropylmethylcellulose–nicotinamide binary system. Int J Pharm 219:39–49. doi: 10.1016/S0378-5173(01)00619-6

Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007. doi: 10.1016/j.polymer.2008.01.027

Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12. doi: 10.1016/S0169-409X(01)00239-3

Hussain S, Grandy DB, Reading M, Craig DQM (2004) A study of phase separation in peptide-loaded HPMC films using Tzero-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy. J Pharm Sci 93:1672–1681. doi: 10.1002/jps.20066

Jiang H, Su W, Caracci S, Bunning TJ, Cooper T, Adams WW (1996) Optical waveguiding and morphology of chitosan thin films. J Appl Polym Sci 61:1163–1171. doi: 10.1002/(sici)1097-4628(19960815)61:7<1163:aid-app12>3.0.co;2-z

Jocic D (2008) Smart textile materials by surface modification with biopolymeric systems. RJTA 12:58–65

Joshi HN, Wilson TD (1993) Calorimetric studies of dissolution of hydroxypropyl methylcellulose E5 (HPMC E5) in water. J Pharm Sci 82:1033–1038. doi: 10.1002/jps.2600821011

Kim SS, Kim SJ, Moon YD, Lee YM (1994) Thermal characteristics of chitin and hydroxypropyl chitin. Polymer 35:3212–3216. doi: 10.1016/0032-3861(94)90124-4

Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193. doi: 10.1016/S0144-8617(01)00320-4

Kopeček J (2002) Polymer chemistry: swell gels. Nature 417:388

Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym 48:179–190. doi: 10.1016/S0144-8617(01)00261-2

Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. doi: 10.1021/cr000108x

Loh GOK, Tan YTF, Peh KK (2014) Effect of HPMC concentration on β-cyclodextrin solubilization of norfloxacin. Carbohydr Polym 101:505–510. doi: 10.1016/j.carbpol.2013.09.084

McCrystal CB, Ford JL, Rajabi-Siahboomi AR (1999) Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition. J Pharm Sci 88:797–801. doi: 10.1021/js9804260

McPhillips H, Craig DQM, Royall PG, Hill VL (1999) Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm 180:83–90. doi: 10.1016/S0378-5173(98)00407-4

Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103. doi: 10.1016/j.carbpol.2005.02.022

OriginLab Corporation (2010) OriginPro 8.5.0 SR1. Northampton, MA, USA

Pal K, Banthia AK, Majumdar D (2009) Polymeric hydrogels: characterization and biomedical applications—a mini review. Des Monomers Polym 12:197–220. doi: 10.1163/156855509X436030

Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan–polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2:414–425. doi: 10.4236/jbnb.2011.24051

Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534. doi: 10.3390/polym4031517

Patel A, Mequanint K (2011) Hydrogel biomaterials. Biomedical engineering—frontiers and challenges. InTech, Morn Hill. doi: 10.5772/24856

Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166. doi: 10.1016/S0040-6031(02)00523-3

Qu X, Wirsén A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41:4589–4598. doi: 10.1016/S0032-3861(99)00685-0

Ratto J, Hatakeyama T, Blumstein RB (1995) Differential scanning calorimetry investigation of phase transitions in water/chitosan systems. Polymer 36:2915–2919. doi: 10.1016/0032-3861(95)94340-Y

Robinson JW, Frame EMS, Frame II GM (2005) Undergraduate instrumental analysis. In: Dekker M (ed) 6th edn. Taylor & Francis e-Library, New York

Rotta J (2008) Propriedades físico-químicas de soluções formadoras e de filmes de quitosana e hidroxipropilmetilcelulose (Master Thesis). Universidade Federal de Santa Catarina, Florianópolis, Brazil

Rotta J, Minatti E, Barreto PLM (2011) Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol. SBCTA. doi: 10.1590/s0101-20612011000200026

Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171. doi: 10.1016/j.chembiol.2003.12.004

Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426. doi: 10.1016/j.ejpb.2004.03.019

Ruiz-Caro R, Veiga-Ochoa MD (2009) Characterization and dissolution study of chitosan freeze–dried systems for drug controlled release. Molecules 14:4370–4386. doi: 10.3390/molecules14114370

Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer 41:7051–7056. doi: 10.1016/S0032-3861(00)00067-7

Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. doi: 10.3390/ma2020353

Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24:1073–1087. doi: 10.1002/app.1979.070240420

Schubnell M, Schawe JEK (2001) Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry. Int J Pharm 217:173–181. doi: 10.1016/S0378-5173(01)00601-9

Slama SB, Hajji M, Ezzaouia H (2012) Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon. Nanoscale Res Lett 7:1–6. doi: 10.1186/1556-276x-7-464

Solaiman A (2010) Properties of capsule shells made from hydroxypropyl methylcellulose (hypromellose). Doctor of Philosophy, University of Sunderland, UK

Synytsya A et al (2009) pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin–chitosan complexes. Biomacromolecules 10:1067–1076. doi: 10.1021/bm8011715

Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208. doi: 10.1016/j.clae.2004.08.003

Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan—PVA film for food packaging applications. Int J Biol Macromol 45:372–376. doi: 10.1016/j.ijbiomac.2009.07.006

Wu Y-B, Yu S-H, Mi F-L, Wu C-W, Shyu S-S, Peng C-K, Chao A-C (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440. doi: 10.1016/j.carbpol.2004.05.013

Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192. doi: 10.1016/j.indcrop.2004.03.002

Yin J, Luo K, Chen X, Khutoryanskiy VV (2006) Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr Polym 63:238–244. doi: 10.1016/j.carbpol.2005.08.041

Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React Funct Polym 73:923–928. doi: 10.1016/j.reactfunctpolym.2012.12.014

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem