- -

Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Borrell Tomás, María Amparo es_ES
dc.contributor.author Rocha, Victoria G. es_ES
dc.contributor.author Torrecillas, Ramon es_ES
dc.contributor.author Fernandez, Adolfo es_ES
dc.date.accessioned 2016-06-02T11:04:46Z
dc.date.available 2016-06-02T11:04:46Z
dc.date.issued 2011-07
dc.identifier.issn 0002-7820
dc.identifier.uri http://hdl.handle.net/10251/65114
dc.description.abstract The development of new carbon nanofibers (CNFs)–ceramic nanocomposite materials with excellent mechanical, thermal, and electrical properties is interesting for a wide range of industrial applications. Among the ceramic materials, zirconia stands out for their excellent mechanical properties. The main limitations in the preparation of this kind of nanocomposites are related with the difficulty in obtaining materials with homogeneous distribution of both phases and the dissimilar properties of CNFs and ZrO2 which causes poor interaction between them. CNFs-reinforced zirconia nanocomposites ZrO2/xCNFs (x=1–20 vol%) were prepared by powder mixture and sintered by spark plasma sintering (SPS). ZrO2-reinforced CNFs nanocomposites CNFs/xZrO2 (x=20 vol%) were prepared by powder mixture and a surface coating of CNFs by the wet chemical route with zirconia precursor is proposed as a very effective way to improve the interaction between CNFs and ZrO2. After SPS sintering, an improvement of 50% in fracture strength was found for similar nanocomposite compositions when the surface coating was used. The improved mechanical properties of these nanocomposites are caused by stronger interaction between the CNFs and ZrO2. es_ES
dc.description.sponsorship This work was financially supported by National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for her research grant BES2007-15033. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of the American Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1551-2916.2010.04354.x
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2006-01783/ES/MATERIALES CERAMICOS NANOESTRUCTURADOS TRANSPARENTES PARA APLICACIONES OPTICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-30989-E/ES/CERCANANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FICYT//PC07-021/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BES-2007-15033/ES/BES-2007-15033/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Borrell Tomás, MA.; Rocha, VG.; Torrecillas, R.; Fernandez, A. (2011). Improvement of Carbon Nanofibers/ZrO2 Composites Properties with a Zirconia Nanocoating on Carbon Nanofibers by Sol–Gel Method. Journal of the American Ceramic Society. 94(7):2048-2052. https://doi.org/10.1111/j.1551-2916.2010.04354.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/j.1551-2916.2010.04354.x es_ES
dc.description.upvformatpinicio 2048 es_ES
dc.description.upvformatpfin 2052 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 94 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 192835 es_ES
dc.contributor.funder Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. doi:10.1038/354056a0 es_ES
dc.description.references Merkoçi, A. (2005). Carbon Nanotubes in Analytical Sciences. Microchimica Acta, 152(3-4), 157-174. doi:10.1007/s00604-005-0439-z es_ES
dc.description.references Uchida, T., Anderson, D. P., Minus, M. L., & Kumar, S. (2006). Morphology and modulus of vapor grown carbon nano fibers. Journal of Materials Science, 41(18), 5851-5856. doi:10.1007/s10853-006-0324-0 es_ES
dc.description.references Hvizdoš, P., Puchý, V., Duszová, A., & Dusza, J. (2010). Tribological behavior of carbon nanofiber–zirconia composite. Scripta Materialia, 63(2), 254-257. doi:10.1016/j.scriptamat.2010.03.069 es_ES
dc.description.references Balázsi, C., Kónya, Z., Wéber, F., Biró, L. P., & Arató, P. (2003). Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Materials Science and Engineering: C, 23(6-8), 1133-1137. doi:10.1016/j.msec.2003.09.085 es_ES
dc.description.references Tatami, J., Katashima, T., Komeya, K., Meguro, T., & Wakihara, T. (2005). Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics. Journal of the American Ceramic Society, 88(10), 2889-2893. doi:10.1111/j.1551-2916.2005.00539.x es_ES
dc.description.references Hirota, K., Hara, H., & Kato, M. (2007). Mechanical properties of simultaneously synthesized and consolidated carbon nanofiber (CNF)-dispersed SiC composites by pulsed electric-current pressure sintering. Materials Science and Engineering: A, 458(1-2), 216-225. doi:10.1016/j.msea.2006.12.065 es_ES
dc.description.references Dusza, J., Blugan, G., Morgiel, J., Kuebler, J., Inam, F., Peijs, T., … Puchy, V. (2009). Hot pressed and spark plasma sintered zirconia/carbon nanofiber composites. Journal of the European Ceramic Society, 29(15), 3177-3184. doi:10.1016/j.jeurceramsoc.2009.05.030 es_ES
dc.description.references Lee, S.-Y., Kim, H., McIntyre, P. C., Saraswat, K. C., & Byun, J.-S. (2003). Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application. Applied Physics Letters, 82(17), 2874-2876. doi:10.1063/1.1569985 es_ES
dc.description.references Kobayashi, S., & Kawai, W. (2007). Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Composites Part A: Applied Science and Manufacturing, 38(1), 114-123. doi:10.1016/j.compositesa.2006.01.006 es_ES
dc.description.references Sun, J., Gao, L., Iwasa, M., Nakayama, T., & Niihara, K. (2005). Failure investigation of carbon nanotube/3Y-TZP nanocomposites. Ceramics International, 31(8), 1131-1134. doi:10.1016/j.ceramint.2004.11.010 es_ES
dc.description.references Ukai, T., Sekino, T., Hirvonen, A. T., Tanaka, N., Kusunose, T., Nakayama, T., & Niihara, K. (2006). Preparation and Electrical Properties of Carbon Nanotubes Dispersed Zirconia Nanocomposites. Key Engineering Materials, 317-318, 661-664. doi:10.4028/www.scientific.net/kem.317-318.661 es_ES
dc.description.references Duszová, A., Dusza, J., Tomášek, K., Morgiel, J., Blugan, G., & Kuebler, J. (2008). Zirconia/carbon nanofiber composite. Scripta Materialia, 58(6), 520-523. doi:10.1016/j.scriptamat.2007.11.002 es_ES
dc.description.references Wang, X., Padture, N. P., & Tanaka, H. (2004). Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nature Materials, 3(8), 539-544. doi:10.1038/nmat1161 es_ES
dc.description.references Zhan, G.-D., Kuntz, J. D., Garay, J. E., & Mukherjee, A. K. (2003). Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Applied Physics Letters, 83(6), 1228-1230. doi:10.1063/1.1600511 es_ES
dc.description.references Yucheng, W., & Zhengyi, F. (2002). Study of temperature field in spark plasma sintering. Materials Science and Engineering: B, 90(1-2), 34-37. doi:10.1016/s0921-5107(01)00780-2 es_ES
dc.description.references Haase, F., & Sauer, J. (1998). The Surface Structure of Sulfated Zirconia:  Periodic ab Initio Study of Sulfuric Acid Adsorbed on ZrO2(101) and ZrO2(001). Journal of the American Chemical Society, 120(51), 13503-13512. doi:10.1021/ja9825534 es_ES
dc.description.references Matsui, K., Suzuki, H., Ohgai, M., & Arashi, H. (1995). Raman Spectroscopic Studies on the Formation Mechanism of Hydrous-Zirconia Fine Particles. Journal of the American Ceramic Society, 78(1), 146-152. doi:10.1111/j.1151-2916.1995.tb08374.x es_ES
dc.description.references Gateshki, M., Petkov, V., Williams, G., Pradhan, S. K., & Ren, Y. (2005). Atomic-scale structure of nanocrystallineZrO2prepared by high-energy ball milling. Physical Review B, 71(22). doi:10.1103/physrevb.71.224107 es_ES
dc.description.references Pyda, W., Haberko, K., & Bulko, M. M. (1991). Hydrothermal Crystallization of Zirconia and Zirconia Solid Solutions. Journal of the American Ceramic Society, 74(10), 2622-2629. doi:10.1111/j.1151-2916.1991.tb06810.x es_ES
dc.description.references Dell’Agli, G., & Mascolo, G. (2000). Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. Journal of the European Ceramic Society, 20(2), 139-145. doi:10.1016/s0955-2219(99)00151-x es_ES
dc.description.references Tai, C. Y., Hsiao, B.-Y., & Chiu, H.-Y. (2007). Preparation of silazane grafted yttria-stabilized zirconia nanocrystals via water/CTAB/hexanol reverse microemulsion. Materials Letters, 61(3), 834-836. doi:10.1016/j.matlet.2006.05.068 es_ES
dc.description.references Tai, C. Y., Lee, M.-H., & Wu, Y.-C. (2001). Control of zirconia particle size by using two-emulsion precipitation technique. Chemical Engineering Science, 56(7), 2389-2398. doi:10.1016/s0009-2509(00)00454-1 es_ES
dc.description.references Tai, C. Y., & Hsiao, B.-Y. (2005). CHARACTERIZATION OF ZIRCONIA POWDER SYNTHESIZED VIA REVERSE MICROEMULSION PRECIPITATION. Chemical Engineering Communications, 192(11), 1525-1540. doi:10.1080/009864490896133 es_ES
dc.description.references Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., & Wu, D. (2001). Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 39(3), 329-335. doi:10.1016/s0008-6223(00)00126-3 es_ES
dc.description.references Choi, S. R., & Bansal, N. P. (s. f.). Alumina-Reinforced Zirconia Composites. Handbook of Ceramic Composites, 437-457. doi:10.1007/0-387-23986-3_18 es_ES
dc.description.references Li, W., & Gao, L. (2000). Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. Journal of the European Ceramic Society, 20(14-15), 2441-2445. doi:10.1016/s0955-2219(00)00152-7 es_ES
dc.description.references Borrell, A., Fernández, A., Merino, C., & Torrecillas, R. (2010). High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 101(1), 112-116. doi:10.3139/146.110246 es_ES
dc.description.references Dusza, J., Morgiel, J., Tatarko, P., & Puchy, V. (2009). Characterization of interfaces in ZrO2–carbon nanofiber composite. Scripta Materialia, 61(3), 253-256. doi:10.1016/j.scriptamat.2009.03.052 es_ES
dc.description.references Lauwers, B., Kruth, J. P., Liu, W., Eeraerts, W., Schacht, B., & Bleys, P. (2004). Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials Processing Technology, 149(1-3), 347-352. doi:10.1016/j.jmatprotec.2004.02.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem