- -

Acoustic metamaterial absorbers based on multilayered sonic crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustic metamaterial absorbers based on multilayered sonic crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guild, Matthew es_ES
dc.contributor.author García Chocano, Víctor Manuel es_ES
dc.contributor.author Kan, Weiwei es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2016-06-07T10:44:54Z
dc.date.available 2016-06-07T10:44:54Z
dc.date.issued 2015-03-21
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/65400
dc.description.abstract Through the use of a layered arrangement, it is shown that lossy sonic crystals can be arranged to create a structure with extreme acoustic properties, namely, an acoustic metamaterial. This artificial structure shows different effective fluids and absorptive properties in different orientations. Theoretical, numerical, and experimental results examining thermoviscous losses in sonic crystals are presented, enabling the fabrication and characterization of an acoustic metamaterial absorber with complex-valued anisotropic inertia. To accurately describe and fabricate such an acoustic metamaterial in a realizable experimental configuration, confining structures are needed which modify the effective properties, due to the thermal and viscous boundary layer effects within the sonic crystal lattice. Theoretical formulations are presented which describe the effects of these confined sonic crystals, both individually and as part of an acoustic metamaterial structure. Experimental demonstrations are also reported using an acoustic impedance tube. The formulations developed can be written with no unknown or empirical coefficients, due to the structured lattice of the sonic crystals and organized layering scheme; and it is shown that higher filling fraction arrangements can be used to provide a large enhancement in the loss factor. (C) 2015 AIP Publishing LLC. es_ES
dc.description.sponsorship This work was supported by the U.S. Office of Naval Research (Award No. N000141210216) and by the Spanish Ministerio de Economia y Competitividad (MINECO) under Contract No. TEC2010-19751. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Acoustic metamaterial absorbers based on multilayered sonic crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4915346
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Guild, M.; García Chocano, VM.; Kan, W.; Sánchez-Dehesa Moreno-Cid, J. (2015). Acoustic metamaterial absorbers based on multilayered sonic crystals. Journal of Applied Physics. 117(11):114902-1-114902-14. https://doi.org/10.1063/1.4915346 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4915346 es_ES
dc.description.upvformatpinicio 114902-1 es_ES
dc.description.upvformatpfin 114902-14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 117 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 305090 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Dowling, J. P. (1992). Sonic band structure in fluids with periodic density variations. The Journal of the Acoustical Society of America, 91(5), 2539-2543. doi:10.1121/1.402990 es_ES
dc.description.references Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Kock, W. E., & Harvey, F. K. (1949). Refracting Sound Waves. The Journal of the Acoustical Society of America, 21(5), 471-481. doi:10.1121/1.1906536 es_ES
dc.description.references Cervera, F., Sanchis, L., Sánchez-Pérez, J. V., Martínez-Sala, R., Rubio, C., Meseguer, F., … Sánchez-Dehesa, J. (2001). Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 88(2). doi:10.1103/physrevlett.88.023902 es_ES
dc.description.references Torrent, D., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2006). Homogenization of Two-Dimensional Clusters of Rigid Rods in Air. Physical Review Letters, 96(20). doi:10.1103/physrevlett.96.204302 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Anisotropic mass density by two-dimensional acoustic metamaterials. New Journal of Physics, 10(2), 023004. doi:10.1088/1367-2630/10/2/023004 es_ES
dc.description.references Cummer, S. A., Popa, B.-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M., & Starr, A. (2008). Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.024301 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2008). Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics, 10(6), 063015. doi:10.1088/1367-2630/10/6/063015 es_ES
dc.description.references Li, J., Fok, L., Yin, X., Bartal, G., & Zhang, X. (2009). Experimental demonstration of an acoustic magnifying hyperlens. Nature Materials, 8(12), 931-934. doi:10.1038/nmat2561 es_ES
dc.description.references Pendry, J. B., & Li, J. (2008). An acoustic metafluid: realizing a broadband acoustic cloak. New Journal of Physics, 10(11), 115032. doi:10.1088/1367-2630/10/11/115032 es_ES
dc.description.references Popa, B.-I., & Cummer, S. A. (2009). Design and characterization of broadband acoustic composite metamaterials. Physical Review B, 80(17). doi:10.1103/physrevb.80.174303 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 es_ES
dc.description.references Gumen, L. N., Arriaga, J., & Krokhin, A. A. (2011). Metafluid with anisotropic dynamic mass. Low Temperature Physics, 37(11), 975-978. doi:10.1063/1.3672821 es_ES
dc.description.references Zigoneanu, L., Popa, B.-I., Starr, A. F., & Cummer, S. A. (2011). Design and measurements of a broadband two-dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109(5), 054906. doi:10.1063/1.3552990 es_ES
dc.description.references Reyes-Ayona, E., Torrent, D., & Sánchez-Dehesa, J. (2012). Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid. The Journal of the Acoustical Society of America, 132(4), 2896-2908. doi:10.1121/1.4744933 es_ES
dc.description.references Naify, C. J., Chang, C.-M., McKnight, G., & Nutt, S. (2010). Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. Journal of Applied Physics, 108(11), 114905. doi:10.1063/1.3514082 es_ES
dc.description.references Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 es_ES
dc.description.references Naify, C. J., Chang, C.-M., McKnight, G., Scheulen, F., & Nutt, S. (2011). Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 109(10), 104902. doi:10.1063/1.3583656 es_ES
dc.description.references Hussein, M. I., & Frazier, M. J. (2013). Metadamping: An emergent phenomenon in dissipative metamaterials. Journal of Sound and Vibration, 332(20), 4767-4774. doi:10.1016/j.jsv.2013.04.041 es_ES
dc.description.references Zhang, Y., Wen, J., Zhao, H., Yu, D., Cai, L., & Wen, X. (2013). Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells. Journal of Applied Physics, 114(6), 063515. doi:10.1063/1.4818435 es_ES
dc.description.references Manimala, J. M., & Sun, C. T. (2014). Microstructural design studies for locally dissipative acoustic metamaterials. Journal of Applied Physics, 115(2), 023518. doi:10.1063/1.4861632 es_ES
dc.description.references Oudich, M., Zhou, X., & Badreddine Assouar, M. (2014). General analytical approach for sound transmission loss analysis through a thick metamaterial plate. Journal of Applied Physics, 116(19), 193509. doi:10.1063/1.4901997 es_ES
dc.description.references Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep04674 es_ES
dc.description.references Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 es_ES
dc.description.references García-Chocano, V. M., Cabrera, S., & Sánchez-Dehesa, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 101(18), 184101. doi:10.1063/1.4764560 es_ES
dc.description.references Climente, A., Torrent, D., & Sánchez-Dehesa, J. (2012). Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100(14), 144103. doi:10.1063/1.3701611 es_ES
dc.description.references Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 es_ES
dc.description.references Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176(-1), 379. doi:10.1017/s0022112087000727 es_ES
dc.description.references Tarnow, V. (1996). Compressibility of air in fibrous materials. The Journal of the Acoustical Society of America, 99(5), 3010-3017. doi:10.1121/1.414790 es_ES
dc.description.references Peyrega, C., & Jeulin, D. (2013). Estimation of acoustic properties and of the representative volume element of random fibrous media. Journal of Applied Physics, 113(10), 104901. doi:10.1063/1.4794501 es_ES
dc.description.references Perrot, C., Chevillotte, F., & Panneton, R. (2008). Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments. Journal of Applied Physics, 103(2), 024909. doi:10.1063/1.2829774 es_ES
dc.description.references Perrot, C., Chevillotte, F., & Panneton, R. (2008). Bottom-up approach for microstructure optimization of sound absorbing materials. The Journal of the Acoustical Society of America, 124(2), 940-948. doi:10.1121/1.2945115 es_ES
dc.description.references Perrot, C., Chevillotte, F., Tan Hoang, M., Bonnet, G., Bécot, F.-X., Gautron, L., & Duval, A. (2012). Microstructure, transport, and acoustic properties of open-cell foam samples: Experiments and three-dimensional numerical simulations. Journal of Applied Physics, 111(1), 014911. doi:10.1063/1.3673523 es_ES
dc.description.references Tarnow, V. (1996). Airflow resistivity of models of fibrous acoustic materials. The Journal of the Acoustical Society of America, 100(6), 3706-3713. doi:10.1121/1.417233 es_ES
dc.description.references Kuwabara, S. (1959). The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers. Journal of the Physical Society of Japan, 14(4), 527-532. doi:10.1143/jpsj.14.527 es_ES
dc.description.references Tournat, V., Pagneux, V., Lafarge, D., & Jaouen, L. (2004). Multiple scattering of acoustic waves and porous absorbing media. Physical Review E, 70(2). doi:10.1103/physreve.70.026609 es_ES
dc.description.references Martin, P. A., Maurel, A., & Parnell, W. J. (2010). Estimating the dynamic effective mass density of random composites. The Journal of the Acoustical Society of America, 128(2), 571-577. doi:10.1121/1.3458849 es_ES
dc.description.references Attenborough, K. (1983). Acoustical characteristics of rigid fibrous absorbents and granular materials. The Journal of the Acoustical Society of America, 73(3), 785-799. doi:10.1121/1.389045 es_ES
dc.description.references Evans, J. M., & Attenborough, K. (2002). Sound propagation in concentrated emulsions: Comparison of coupled phase model and core-shell model. The Journal of the Acoustical Society of America, 112(5), 1911-1917. doi:10.1121/1.1510142 es_ES
dc.description.references Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724 es_ES
dc.description.references Arnott, W. P., Bass, H. E., & Raspet, R. (1991). General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. The Journal of the Acoustical Society of America, 90(6), 3228-3237. doi:10.1121/1.401432 es_ES
dc.description.references Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302 es_ES
dc.description.references Baccigalupi, A. (1999). ADC testing methods. Measurement, 26(3), 199-205. doi:10.1016/s0263-2241(99)00033-0 es_ES
dc.description.references Salissou, Y., & Panneton, R. (2010). Wideband characterization of the complex wave number and characteristic impedance of sound absorbers. The Journal of the Acoustical Society of America, 128(5), 2868-2876. doi:10.1121/1.3488307 es_ES
dc.description.references Song, B. H., & Bolton, J. S. (2000). A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America, 107(3), 1131-1152. doi:10.1121/1.428404 es_ES
dc.description.references Guild, M. D., Garcia-Chocano, V. M., Kan, W., & Sánchez-Dehesa, J. (2014). Enhanced inertia from lossy effective fluids using multi-scale sonic crystals. AIP Advances, 4(12), 124302. doi:10.1063/1.4901880 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem