- -

Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner Sanz, Juan José es_ES
dc.contributor.author Ortega Navarro, Emma María es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2016-06-08T10:39:00Z
dc.date.issued 2015-04-20
dc.identifier.issn 1615-6846
dc.identifier.uri http://hdl.handle.net/10251/65508
dc.description.abstract An individual PEM fuel cell 6-parameter mechanistic model was developed. In parallel, experimental polarization curves were obtained at different temperature and inlet gas humidities conditions. The 6 model parameters were determined by fitting the semi empirical model to the experimental curve using a non linear regression method. Finally, a statistical analysis was carried out in order to determine which operating conditions (temperature and inlet humidities) have a significant effect on which model parameters. A black box model was built in order to relate the model parameter values to the significant operating conditions for each one of them. The obtained model was able to satisfactory reproduce the experimental behaviour of the system at low current densities. es_ES
dc.description.sponsorship The authors are very grateful to the vice-chancellor for research of the Universitat Politecnica de Valencia for its financial support in form of excellence grant; and to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Fuel Cells es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Humidity es_ES
dc.subject PEMFC es_ES
dc.subject Semi-Empirical Modeling es_ES
dc.subject Statistical Analysis es_ES
dc.subject Temperature es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/fuce.201400163
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F268/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Giner Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells. 15(3):479-493. https://doi.org/10.1002/fuce.201400163 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/fuce.201400163 es_ES
dc.description.upvformatpinicio 479 es_ES
dc.description.upvformatpfin 493 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 294445 es_ES
dc.identifier.eissn 1615-6854
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references CANDUSSO, D., HAREL, F., DEBERNARDINIS, A., FRANCOIS, X., PERA, M., HISSEL, D., … KAUFFMANN, J. (2006). Characterisation and modelling of a 5kW PEMFC for transportation applications. International Journal of Hydrogen Energy, 31(8), 1019-1030. doi:10.1016/j.ijhydene.2005.11.010 es_ES
dc.description.references Kulikovsky, A. A. (2013). A Physically–Based Analytical Polarization Curve of a PEM Fuel Cell. Journal of The Electrochemical Society, 161(3), F263-F270. doi:10.1149/2.028403jes es_ES
dc.description.references Nguyen, T. V. (1993). A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells. Journal of The Electrochemical Society, 140(8), 2178. doi:10.1149/1.2220792 es_ES
dc.description.references Springer, T. E. (1991). Polymer Electrolyte Fuel Cell Model. Journal of The Electrochemical Society, 138(8), 2334. doi:10.1149/1.2085971 es_ES
dc.description.references Amphlett, J. C. (1995). Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. Journal of The Electrochemical Society, 142(1), 1. doi:10.1149/1.2043866 es_ES
dc.description.references Lee, J. H., Lalk, T. R., & Appleby, A. J. (1998). Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. Journal of Power Sources, 70(2), 258-268. doi:10.1016/s0378-7753(97)02683-9 es_ES
dc.description.references Kim, J. (1995). Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation. Journal of The Electrochemical Society, 142(8), 2670. doi:10.1149/1.2050072 es_ES
dc.description.references Mann, R. F., Amphlett, J. C., Peppley, B. A., & Thurgood, C. P. (2006). Henry’s Law and the solubilities of reactant gases in the modelling of PEM fuel cells. Journal of Power Sources, 161(2), 768-774. doi:10.1016/j.jpowsour.2006.05.054 es_ES
dc.description.references Zhang, J. (Ed.). (2008). PEM Fuel Cell Electrocatalysts and Catalyst Layers. doi:10.1007/978-1-84800-936-3 es_ES
dc.description.references Song, C., Tang, Y., Zhang, J. L., Zhang, J., Wang, H., Shen, J., … Kozak, P. (2007). PEM fuel cell reaction kinetics in the temperature range of 23–120°C. Electrochimica Acta, 52(7), 2552-2561. doi:10.1016/j.electacta.2006.09.008 es_ES
dc.description.references Mann, R. F., Amphlett, J. C., Hooper, M. A. I., Jensen, H. M., Peppley, B. A., & Roberge, P. R. (2000). Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1-2), 173-180. doi:10.1016/s0378-7753(99)00484-x es_ES
dc.description.references BARBIR, F. (1997). Efficiency and economics of proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 22(10-11), 1027-1037. doi:10.1016/s0360-3199(96)00175-9 es_ES
dc.description.references Wang, Z. H., Wang, C. Y., & Chen, K. S. (2001). Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. Journal of Power Sources, 94(1), 40-50. doi:10.1016/s0378-7753(00)00662-5 es_ES
dc.description.references He, G., Ming, P., Zhao, Z., Abudula, A., & Xiao, Y. (2007). A two-fluid model for two-phase flow in PEMFCs. Journal of Power Sources, 163(2), 864-873. doi:10.1016/j.jpowsour.2006.09.059 es_ES
dc.description.references Carpenter, J. H. (1966). NEW MEASUREMENTS OF OXYGEN SOLUBILITY IN PURE AND NATURAL WATER1. Limnology and Oceanography, 11(2), 264-277. doi:10.4319/lo.1966.11.2.0264 es_ES
dc.description.references Zhang, J., Tang, Y., Song, C., Xia, Z., Li, H., Wang, H., & Zhang, J. (2008). PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures. Electrochimica Acta, 53(16), 5315-5321. doi:10.1016/j.electacta.2008.02.074 es_ES
dc.description.references Bao, C., Ouyang, M., & Yi, B. (2006). Modeling and optimization of the air system in polymer exchange membrane fuel cell systems. Journal of Power Sources, 156(2), 232-243. doi:10.1016/j.jpowsour.2005.06.008 es_ES
dc.description.references Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., … Mazza, A. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 178(1), 103-117. doi:10.1016/j.jpowsour.2007.12.068 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem