- -

A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gascón Martínez, María Llanos es_ES
dc.contributor.author García Manrique, Juan Antonio es_ES
dc.contributor.author LeBel, F. es_ES
dc.contributor.author Ruiz, E. es_ES
dc.contributor.author Trochu, F. es_ES
dc.date.accessioned 2016-06-15T13:26:21Z
dc.date.available 2016-06-15T13:26:21Z
dc.date.issued 2016-04
dc.identifier.issn 1960-6206
dc.identifier.uri http://hdl.handle.net/10251/65977
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s12289-015-1225-z es_ES
dc.description.abstract This paper addresses the numerical simulation of void formation and transport during mold filling in Resin Transfer Molding (RTM). The saturation equation, based on a two-phase flow model resin/air, is coupled with Darcy s law and mass conservation to simulate the unsaturated filling flow that takes place in a RTM mold when resin is injected through the fiber bed. These equations lead to a system composed of an advection diffusion equation for saturation including capillary effects and an elliptic equation for pressure taking into account the effect of air residual saturation. The model introduces the relative permeability as a function of resin saturation. When capillary effects are omitted, the hyperbolic nature of the saturation equation and its strong coupling with Darcy equation through relative permeability represent a challenging numerical issue. The combination of the constitutive physical laws relating permeability to saturation with the coupled system of the pressure and saturation equations allows predicting the saturation profiles. The model was validated by comparison with experimental data obtained for a fiberglass reinforcement injected in a RTM mold at constant flow rate. The saturation measured as a function of time during the resin impregnation of the fiber bed compared very well with numerical predictions. es_ES
dc.description.sponsorship The authors acknowledge financial support of the Spanish Government (Projects DPI2010-20333 and DPI2013-44903-R-AR), of the National Science and Research Council of Canada (NSERC) and of the Canada Reseach Chair (CRC) program. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof International Journal of Material Forming es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Resin Transfer Molding (RTM) es_ES
dc.subject Two-phase flow es_ES
dc.subject Voids es_ES
dc.subject Saturation es_ES
dc.subject Relative permeability es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12289-015-1225-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20333/ES/DESARROLLO SOSTENIBLE Y MODELADO DE COMPOSITES TERMOPLASTICOS (GREEN COMPOSITE)/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44903-R/ES/FABRICACION DE COMPOSITES DE ALTAS PRESTACIONES SIN AUTOCLAVE (OOA)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Gascón Martínez, ML.; García Manrique, JA.; Lebel, F.; Ruiz, E.; Trochu, F. (2016). A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding. International Journal of Material Forming. 9(2):229-239. doi:10.1007/s12289-015-1225-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs12289-015-1225-z es_ES
dc.description.upvformatpinicio 229 es_ES
dc.description.upvformatpfin 239 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 292720 es_ES
dc.identifier.eissn 1960-6214
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada es_ES
dc.contributor.funder Social Sciences and Humanities Research Council of Canada es_ES
dc.description.references Patel N, Lee LJ (1996) Modeling of void formation and removal in liquid composite molding. Part I: wettability analysis. Polym Compos 17(1):96–103 es_ES
dc.description.references Ruiz E, Achim V, Soukane S, Trochu F, Bréard J (2006) Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites. Compos Sci Technol 66(3–4):475–486 es_ES
dc.description.references Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos A: Appl Sci Manuf 37(6):890–902 es_ES
dc.description.references Park CH, Lee W (2011) Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review. J Reinf Plast Compos 30(11):957–977 es_ES
dc.description.references Pillai KM (2004) Modeling the unsaturated flow in liquid composite molding processes: a review and some thoughts. J Compos Mater 38(23):2097–2118 es_ES
dc.description.references Breard J, Saouab A, Bouquet G (2003) Numerical simulation of void formation in LCM. Compos A: Appl Sci Manuf 34:517–523 es_ES
dc.description.references Breard J, Henzel Y, Trochu F, Gauvin R (2003) Analysis of dynamic flows through porous media. Part I: comparison between saturated and unsaturated flows in fibrous reinforcements. Polym Compos 24(3):391–408 es_ES
dc.description.references Parnas RS, Phelan FR Jr (1991) The effect of heterogeneous porous media on mold filling in Resin Transfer Molding. SAMPE Q 22(2):53–60 es_ES
dc.description.references Parseval DY, Pillai KM, Advani SG (1997) A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp Porous Media 27(3):243–264 es_ES
dc.description.references Pillai KM (2002) Governing equations for unsaturated flow through woven fiber mats. Part 1. Isothermal flows. Compos A: Appl Sci Manuf 33(7):1007–1019 es_ES
dc.description.references Simacek P, Advani SG (2003) A numerical model to predict fiber tow saturation during Liquid Composite Molding. Compos Sci Technol 63:1725–1736 es_ES
dc.description.references García JA, Gascón L, Chinesta F (2010) A flux limiter strategy for solving the saturation equation in RTM process simulation. Compos A: Appl Sci Manuf 41:78–82 es_ES
dc.description.references Chui WK, Glimm J, Tangerman FM, Jardine AP, Madsen JS, Donnellan TM, Leek R (1997) Process modeling in Resin Transfer Molding as a method to enhance product quality. SIAM Rev 39(4):714–727 es_ES
dc.description.references Nordlund M, Michaud V (2012) Dynamic saturation curve measurement for resin flow in glass fibre reinforcement. Compos A: Appl Sci Manuf 43:333–343 es_ES
dc.description.references García JA, Ll G, Chinesta F (2003) A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Comput Methods Appl Mech Eng 192(7–8):877–893 es_ES
dc.description.references García JA, Ll G, Chinesta F, Trochu F, Ruiz E (2010) An efficient solver of the saturation equation in liquid composite molding processes. Int J Mater Form 3(2):1295–1302 es_ES
dc.description.references Lebel F (2012) Contrôle de la fabrication des composites par injection sur renforts. École Polytechnique de Montréal, Canada es_ES
dc.description.references Van Genuchten MT (1980) Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898 es_ES
dc.description.references Buckley SE, Leverett MC (1942) Mechanism of fluid displacement in sands. Pet Trans AWME 146:107–116 es_ES
dc.description.references Lundstrom TS, Gebart BR (1994) Influence from process parameters on void formation in Resin Transfer Molding. Polym Compos 15(1):25–33 es_ES
dc.description.references Lundstrom TS (1997) Measurement of void collapse during Resin Transfer Molding. Compos A: Appl Sci Manuf 28(3):201–214 es_ES
dc.description.references Lundstrom TS, Frishfelds V, Jakovics A (2010) Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry. Compos A: Appl Sci Manuf 41:83–92 es_ES
dc.description.references Lebel F, Fanaei A, Ruiz E, Trochu F (2012) Experimental characterization by fluorescence of capillary flows in the fiber tows of engineering fabrics. Open J Inorg Non-Metallic Mater 2(3):25–45 es_ES
dc.description.references Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University. Hydrology Papers 1–37 es_ES
dc.description.references Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Monthly 19(1):38–41 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem