- -

Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Serra, Marco es_ES
dc.contributor.author García Baldoví, Hermenegildo es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-07-04T10:43:15Z
dc.date.available 2016-07-04T10:43:15Z
dc.date.issued 2015-09
dc.identifier.issn 1434-1948
dc.identifier.uri http://hdl.handle.net/10251/67016
dc.description.abstract [EN] In the search for novel photocatalysts for hydrogen production and with the alpha-Fe2O3 photoelectrocatalyst as a recent precedent, we report herein the preparation, semiconductor properties and photocatalytic activity of metal-doped (0.1-5 wt.-% loading) iron hydroxyl phosphate (FeP). X-ray diffraction analyses of FeP samples subjected to extended photocatalytic irradiation showed the stability of this framework phosphate under photocatalytic conditions. Doping increased the photocatalytic efficiency of FeP for all dopants, with the optimal doping level between 0.1 and 1%. Under the optimized conditions (Cr at 1% doping), the photocatalytic activity of FeP reached a hydrogen production rate of 35.82 mu molg(Fe)(-1) in the absence of platinum as co-catalyst. The conduction flat band potential was estimated by photocurrent measurements or impedance spectroscopy to be 0.1 eV versus NHE and the charge carrier density 2.6 x 10(20) carriers cm(-3). Transient absorption spectroscopy revealed a transient species decaying on the microsecond time-scale characterized by a broad band spanning 300-750 nm. This transient was attributed to the charge-separated state. These results are promising for the development of novel photocatalytic materials based on framework metal phosphate. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (MEC) (Severo Ochoa and CTQ20212-32315) and the Generalidad Valenciana (Prometeo 2012/014) is gratefully acknowledged. M. S. thanks the Spanish Consejo Superior de Investigaciones Cientificas (CSIC) and Technical University of Valencia for a postgraduate scholarship. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iron hydroxyl phosphate es_ES
dc.subject Methanol es_ES
dc.subject Water es_ES
dc.subject Photocatalyst es_ES
dc.subject Hydrogen prodn. es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201500629
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Serra, M.; García Baldoví, H.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Doped Framework Iron Hydroxyl Phosphate as Photocatalyst for Hydrogen Production from Water/Methanol Mixtures. European Journal of Inorganic Chemistry. 2015(25):4237-4243. https://doi.org/10.1002/ejic.201500629 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1002/ejic.201500629 es_ES
dc.description.upvformatpinicio 4237 es_ES
dc.description.upvformatpfin 4243 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.description.issue 25 es_ES
dc.relation.senia 298269 es_ES
dc.identifier.eissn 1099-0682
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Economía y Competitividad; European Regional Development Fund es_ES
dc.description.references Amao, Y. (2011). Solar Fuel Production Based on the Artificial Photosynthesis System. ChemCatChem, 3(3), 458-474. doi:10.1002/cctc.201000293 es_ES
dc.description.references Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289 es_ES
dc.description.references Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b es_ES
dc.description.references Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k es_ES
dc.description.references Serpone, N., Lawless, D., & Terzian, R. (1992). Solar fuels: Status and perspectives. Solar Energy, 49(4), 221-234. doi:10.1016/0038-092x(92)90001-q es_ES
dc.description.references Abbott, D. (2010). Keeping the Energy Debate Clean: How Do We Supply the World’s Energy Needs? Proceedings of the IEEE, 98(1), 42-66. doi:10.1109/jproc.2009.2035162 es_ES
dc.description.references Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy, 27(3), 235-264. doi:10.1016/s0360-3199(01)00131-8 es_ES
dc.description.references Kamat, P. V. (2007). Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C, 111(7), 2834-2860. doi:10.1021/jp066952u es_ES
dc.description.references Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729-15735. doi:10.1073/pnas.0603395103 es_ES
dc.description.references Bard, A. J., & Fox, M. A. (1995). Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 28(3), 141-145. doi:10.1021/ar00051a007 es_ES
dc.description.references Bensaid, S., Centi, G., Garrone, E., Perathoner, S., & Saracco, G. (2012). Towards Artificial Leaves for Solar Hydrogen and Fuels from Carbon Dioxide. ChemSusChem, 5(3), 500-521. doi:10.1002/cssc.201100661 es_ES
dc.description.references Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 110(11), 6503-6570. doi:10.1021/cr1001645 es_ES
dc.description.references Crabtree, G. W., Dresselhaus, M. S., & Buchanan, M. V. (2004). The Hydrogen Economy. Physics Today, 57(12), 39-44. doi:10.1063/1.1878333 es_ES
dc.description.references Graetzel, M. (1981). Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Accounts of Chemical Research, 14(12), 376-384. doi:10.1021/ar00072a003 es_ES
dc.description.references Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009 es_ES
dc.description.references NOWOTNY, J., SORRELL, C., SHEPPARD, L., & BAK, T. (2005). Solar-hydrogen: Environmentally safe fuel for the future. International Journal of Hydrogen Energy, 30(5), 521-544. doi:10.1016/j.ijhydene.2004.06.012 es_ES
dc.description.references Bahnemann, D. W. (2000). Current challenges in photocatalysis: Improved photocatalysts and appropriate photoreactor engineering. Research on Chemical Intermediates, 26(2), 207-220. doi:10.1163/156856700x00255 es_ES
dc.description.references Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. Chemical Reviews, 93(1), 341-357. doi:10.1021/cr00017a016 es_ES
dc.description.references FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 es_ES
dc.description.references Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129. doi:10.1016/s0920-5861(99)00107-8 es_ES
dc.description.references Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735-758. doi:10.1021/cr00035a013 es_ES
dc.description.references Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35. doi:10.1016/s1010-6030(97)00118-4 es_ES
dc.description.references Beermann, N., Vayssieres, L., Lindquist, S.-E., & Hagfeldt, A. (2000). Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite. Journal of The Electrochemical Society, 147(7), 2456. doi:10.1149/1.1393553 es_ES
dc.description.references Bjoerksten, U., Moser, J., & Graetzel, M. (1994). Photoelectrochemical Studies on Nanocrystalline Hematite Films. Chemistry of Materials, 6(6), 858-863. doi:10.1021/cm00042a026 es_ES
dc.description.references Hu, Y.-S., Kleiman-Shwarsctein, A., Forman, A. J., Hazen, D., Park, J.-N., & McFarland, E. W. (2008). Pt-Doped α-Fe2O3Thin Films Active for Photoelectrochemical Water Splitting. Chemistry of Materials, 20(12), 3803-3805. doi:10.1021/cm800144q es_ES
dc.description.references Kay, A., Cesar, I., & Grätzel, M. (2006). New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3Films. Journal of the American Chemical Society, 128(49), 15714-15721. doi:10.1021/ja064380l es_ES
dc.description.references Sivula, K., Le Formal, F., & Grätzel, M. (2011). Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem, 4(4), 432-449. doi:10.1002/cssc.201000416 es_ES
dc.description.references Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., … Grätzel, M. (2010). Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 132(21), 7436-7444. doi:10.1021/ja101564f es_ES
dc.description.references Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. doi:10.1038/35104607 es_ES
dc.description.references Wang, X., Pang, H., Zhao, S., Shao, W., Yan, B., Li, X., … Du, W. (2013). Ferric Phosphate Hydroxide Microcrystals for Highly Efficient Visible-Light-Driven Photocatalysts. ChemPhysChem, 14(11), 2518-2524. doi:10.1002/cphc.201300331 es_ES
dc.description.references Song, Y., Zavalij, P. Y., Chernova, N. A., Suzuki, M., & Whittingham, M. S. (2003). Comparison of one-, two-, and three-dimensional iron phosphates containing ethylenediamine. Journal of Solid State Chemistry, 175(1), 63-71. doi:10.1016/s0022-4596(03)00144-0 es_ES
dc.description.references Song, Y., Zavalij, P. Y., Chernova, N. A., & Whittingham, M. S. (2005). Synthesis, Crystal Structure, and Electrochemical and Magnetic Study of New Iron (III) Hydroxyl-Phosphates, Isostructural with Lipscombite. Chemistry of Materials, 17(5), 1139-1147. doi:10.1021/cm049406r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem