- -

High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author Esteve Adell, Iván es_ES
dc.contributor.author Blandez Barradas, Juan Francisco es_ES
dc.contributor.author Amarajothi, Dhakshinamoorthy es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Candu, Natalia es_ES
dc.contributor.author Coman, Simona M. es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-07-12T11:53:00Z
dc.date.available 2016-07-12T11:53:00Z
dc.date.issued 2015-10
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/67462
dc.description.abstract [EN] Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013-019) is gratefully acknowledged. Partial financial support from European Union (Being Energy project) is also acknowledged. J.F.B. and I. E.-A. thank the Technical University of Valencia and the Spanish Ministry of Science for PhD scholarships, respectively. The authors are grateful to Mrs. Amparo Forneli for her assistance in the sample preparation and to Dr. Agouram Said from SCSIE, University of Valencia for the sample preparation and HRTEM characterization of samples. AD thanks University Grants Commission, New Delhi, for the award of Assistant Professorship under its Faculty Recharge Programme. AD also thanks Department of Science and Technology, India, for the financial support through Fast Track project (SB/FT/CS-166/2013) and the Generalidad Valenciana for financial aid supporting his stay at Valencia through the Prometeo programme. VP thanks UEFISCDI for financial support through PN-II-ID-PCE-2011-3-0060 project (275/2011).
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chemical-vapor-deposition es_ES
dc.subject Noble-metal nanoparticles es_ES
dc.subject N-doped graphene es_ES
dc.subject Alcohol silylation es_ES
dc.subject Ullmann reaction es_ES
dc.subject Biomass wastes es_ES
dc.subject High-quality es_ES
dc.subject Large-area es_ES
dc.subject Chitosan es_ES
dc.subject Performance es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms9561
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-ID-PCE-2011-3-0060 275%2F2011/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Esteve Adell, I.; Blandez Barradas, JF.; Amarajothi, D.; Alvaro Rodríguez, MM.; Candu, N.; Coman, SM.... (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications. 6. https://doi.org/10.1038/ncomms9561 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms9561 es_ES
dc.description.upvformatpinicio 8561 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 304575 es_ES
dc.identifier.pmid 26509224 en_EN
dc.identifier.pmcid PMC4634216 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía
dc.description.references Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010). es_ES
dc.description.references Li, X., Wang, X., Song, S., Liu, D. & Zhang, H. Selectively deposited noble metal nanoparticles on fe3o4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem. Eur. J. 18, 7601–7760 (2012). es_ES
dc.description.references Liang, Y. et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012). es_ES
dc.description.references Ghanbarlou, H., Rowshanzamir, S., Kazeminasab, B. & Parnian, M. J. Non-precious metal nanoparticles supported on nitrogen-doped graphene as a promising catalyst for oxygen reduction reaction: synthesis, characterization and electrocatalytic performance. J. Power Sources 273, 981–989 (2015). es_ES
dc.description.references Chu, H. et al. Ionic-liquid-assisted preparation of carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv. Funct. Mater. 20, 3747–3752 (2010). es_ES
dc.description.references Ramulifho, T., Ozoemena, K. I., Modibedi, R. M., Jafta, C. J. & Mathe, M. K. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim. Acta 59, 310–320 (2012). es_ES
dc.description.references Wang, Y., Zhao, Y., He, W., Yin, J. & Su, Y. Palladium nanoparticles supported on reduced graphene oxide: facile synthesis and highly efficient electrocatalytic performance for methanol oxidation. Thin Solid Films 544, 88–92 (2013). es_ES
dc.description.references He, Y. et al. Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589 (2012). es_ES
dc.description.references Li, Z. et al. One-pot synthesis of pd nanoparticle catalysts supported on n-doped carbon and application in the domino carbonylation. ACS Catal. 3, 839–845 (2013). es_ES
dc.description.references Xiang, G., He, J., Li, T., Zhuang, J. & Wang, X. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale 3, 3737–3742 (2011). es_ES
dc.description.references Li, Z. et al. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Phys. Chem. Chem. Phys. 13, 2582–2589 (2011). es_ES
dc.description.references Ding, M., Tang, Y. & Star, A. Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147–160 (2013). es_ES
dc.description.references Wildgoose, G. G., Banks, C. E. & Compton, R. G. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2, 182–193 (2006). es_ES
dc.description.references Blandez, J. F., Primo, A., Asiri, A. M., Álvaro, M. & García, H. Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols. Angew. Chem. Int. Ed. 53, 12581–12586 (2014). es_ES
dc.description.references Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240–8254 (2014). es_ES
dc.description.references Zhang, N., Zhang, Y. & Xu, Y. J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012). es_ES
dc.description.references Parga, A. L. V. de., Ha nacido una estrella. El grafeno. An. Quím. 107, 213–220 (2011). es_ES
dc.description.references Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009). es_ES
dc.description.references Sun, T. et al. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Nature 3, 1–6 (2013). es_ES
dc.description.references Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009). es_ES
dc.description.references Jin, X. et al. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7, 1309–1316 (2013). es_ES
dc.description.references Hong, C. et al. Graphene oxide stabilized Cu2O for shape selective nanocatalysis. J. Mater. Chem. A 2, 7147–7151 (2014). es_ES
dc.description.references Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008). es_ES
dc.description.references Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009). es_ES
dc.description.references Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). es_ES
dc.description.references Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011). es_ES
dc.description.references Mattevi, C., Kima, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2010). es_ES
dc.description.references Liu, W., Li, H., Xu, C., Khatami, Y. & Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011). es_ES
dc.description.references Losurdo, M., Giangregorio, M. M., Capezzuto, P. & Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836–20843 (2011). es_ES
dc.description.references Gao, L., Guest, J. R. & Guisinguer, N. P. Epitaxial graphene on Cu (111). Nano Lett. 10, 3512–3516 (2010). es_ES
dc.description.references Zhao, L. et al. Influence of copper crystal surface on the growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011). es_ES
dc.description.references Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E. & Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011). es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & Garcia, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012). es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M. & García, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68, 777–783 (2014). es_ES
dc.description.references Primo, A., Forneli, A., Corma, A. & García, H. From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. ChemSusChem. 5, 2207–2214 (2012). es_ES
dc.description.references Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000). es_ES
dc.description.references Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006). es_ES
dc.description.references Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008). es_ES
dc.description.references Latorre-Sanchez, M. et al. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 50, 518–525 (2012). es_ES
dc.description.references Park, B. K. et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311, 417–424 (2007). es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R. & Garcia, H. Natural alginate as a graphene precursor and template in the synthesis of nanoparticulate ceria/graphene water oxidation photocatalysts. ACS Catal. 4, 497–504 (2014). es_ES
dc.description.references Wu, S. et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J. Mater. Chem. 21, 3467–3470 (2011). es_ES
dc.description.references Jiang, L. et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5, 2784–2789 (2013). es_ES
dc.description.references Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. Microscopy Science, Technology, Applications and Education Vol. 2, 1232–1244Formatex, Badajos (2011). es_ES
dc.description.references Lewin, A. H. & Cohen, T. The mechanism of the Ullman reaction. Detection of an organocopper intermediate. Tetrahedron Lett. 6, 4531–4536 (1965). es_ES
dc.description.references Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002). es_ES
dc.description.references Ma, D., Cai, Q. & Zhang, H. Mild method for Ullman coupling reaction of amines and aryl halides. Org. Lett. 5, 2453–2455 (2003). es_ES
dc.description.references Li, Y., Gao, W., Ci, L., Wang, C. & Ajayan, P. M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48, 1124–1130 (2010). es_ES
dc.description.references Ong, W.-J., Tan, L.-L., Chai, S.-P. & Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015). es_ES
dc.description.references Luo, C., Zhang, Y., Zeng, X., Zeng, Y. & Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005). es_ES
dc.description.references Wu, S.-H. & Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259, 282–286 (2003). es_ES
dc.description.references Hou, Z., Theyssen, N., Brinkmann, A. & Leitner, W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Int. Ed. 117, 1370–1373 (2005). es_ES
dc.description.references Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M. & Garcia, H. Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chem. Commun. 49, 2359–2361 (2013). es_ES
dc.description.references Ito, H., Watanabe, A. & Sawamura, M. Versatile dehydrogenative alcohol silylation catalyzed by Cu (I)-phosphine complex. Org. Lett. 7, 1869–1871 (2005). es_ES
dc.description.references Rendler, S. et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the Cu-H-catalyzed non-enzimatic kinetic resolution with silicon-stereogenic silanes. Chem. Eur. J. 14, 11512–11528 (2008). es_ES
dc.description.references Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chemistry 10, 5607–5622 (2004). es_ES
dc.description.references Shafir, A. & Buchwald, S. L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc. 128, 8742–8743 (2006). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem