- -

High-pressure structural phase transition in MnWO4

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure structural phase transition in MnWO4

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Fuertes, Javier es_ES
dc.contributor.author Friedrich, A. es_ES
dc.contributor.author Gomis, O. es_ES
dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Morgenroth, W. es_ES
dc.contributor.author Sans Tresserras, Juan Ángel es_ES
dc.contributor.author Santamaria-Perez, David es_ES
dc.date.accessioned 2016-07-13T12:04:50Z
dc.date.available 2016-07-13T12:04:50Z
dc.date.issued 2015-03-30
dc.identifier.issn 1098-0121
dc.identifier.uri http://hdl.handle.net/10251/67547
dc.description.abstract The pressure-induced phase transition of the multiferroic manganese tungstate MnWO4 is studied on single crystals using synchrotron x-ray diffraction and Raman spectroscopy. We observe the monoclinic P2/c to triclinic P (1) over bar phase transition at 20.1 GPa and get insight on the phase transition mechanism from the appearance of tilted triclinic domains. Selective Raman spectroscopy experiments with single crystals have shown that the onset of the phase transition occurs 5 GPa below the previously reported pressure obtained from experiments performed with powder samples. es_ES
dc.description.sponsorship The authors thank Professor M. M. Gospodinov from the Institute of Solid State Physics of Bulgaria for providing single-crystal samples of MnWO<INF>4</INF>. This research was partially supported by the Spanish government MINECO under Grant No. MAT2013-46649-C4-1/2-P and by Generalitat Valenciana Grants No. ACOMP-2013-1012 and No. ACOMP-2014-243. We acknowledge Diamond Light Source for time on beamline I15 under proposal EE6517 and I15 beamline scientist for technical support. DESY-Photon Science is gratefully acknowledged. PETRA III at DESY is a member of the Helmholtz Association (HGF). J.R.-F. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship and T. Bernert from the Max-Planck Institut fur Kohlenforschung for fruitful discussions. A.F. acknowledges financial support from the DFG within the priority program SPP1236 (Project No. FR2491/2-1), W.M. acknowledges the BMBF (Projects No. 05K10RFA and No. 05K13RF1), and J.A.S. acknowledges the MINECO for a Juan de la Cierva postdoctoral fellowship. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical review B: Condensed matter and materials physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Crystal-structure es_ES
dc.subject Diffraction es_ES
dc.subject Tungstates es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title High-pressure structural phase transition in MnWO4 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevB.91.104109
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-2-P/ES/OXIDOS METALICOS ABO3 EN CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-1-P/ES/ORTOVANADATOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN Y NANOCRISTALES CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F1012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2014%2F243/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SPP1236%2FFR2491%2F2-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//05K10RFA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//05K13RF1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Ruiz-Fuertes, J.; Friedrich, A.; Gomis, O.; Errandonea, D.; Morgenroth, W.; Sans Tresserras, JÁ.; Santamaria-Perez, D. (2015). High-pressure structural phase transition in MnWO4. Physical review B: Condensed matter and materials physics. 91(10):104109-1-104109-7. https://doi.org/10.1103/PhysRevB.91.104109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevB.91.104109 es_ES
dc.description.upvformatpinicio 104109-1 es_ES
dc.description.upvformatpfin 104109-7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 298629 es_ES
dc.identifier.eissn 1550-235X
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.description.references Cheong, S.-W., & Mostovoy, M. (2007). Multiferroics: a magnetic twist for ferroelectricity. Nature Materials, 6(1), 13-20. doi:10.1038/nmat1804 es_ES
dc.description.references Finger, T., Senff, D., Schmalzl, K., Schmidt, W., Regnault, L. P., Becker, P., … Braden, M. (2010). Electric-field control of the chiral magnetism of multiferroicMnWO4as seen via polarized neutron diffraction. Physical Review B, 81(5). doi:10.1103/physrevb.81.054430 es_ES
dc.description.references Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902. doi:10.1107/s0567740872007186 es_ES
dc.description.references Dachs, H., Weitzel, H., & Stoll, E. (1966). Magnetic structure of manganesetungstate MnWO4 at 4.2°K. Solid State Communications, 4(9), 473-474. doi:10.1016/0038-1098(66)90333-4 es_ES
dc.description.references Dachs, H., Stoll, E., & Weitzel, H. (1967). Kristallstruktur und magnetische Ordnung des Hübnerits, MnWO4. Zeitschrift für Kristallographie, 125(125), 120-129. doi:10.1524/zkri.1967.125.125.120 es_ES
dc.description.references Lautenschläger, G., Weitzel, H., Vogt, T., Hock, R., Böhm, A., Bonnet, M., & Fuess, H. (1993). Magnetic phase transitions ofMnWO4studied by the use of neutron diffraction. Physical Review B, 48(9), 6087-6098. doi:10.1103/physrevb.48.6087 es_ES
dc.description.references Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y., & Arima, T. (2006). Ferroelectric Polarization Flop in a Frustrated MagnetMnWO4Induced by a Magnetic Field. Physical Review Letters, 97(9). doi:10.1103/physrevlett.97.097203 es_ES
dc.description.references Heyer, O., Hollmann, N., Klassen, I., Jodlauk, S., Bohatý, L., Becker, P., … Khomskii, D. (2006). A new multiferroic material: MnWO4. Journal of Physics: Condensed Matter, 18(39), L471-L475. doi:10.1088/0953-8984/18/39/l01 es_ES
dc.description.references Meier, D., Maringer, M., Lottermoser, T., Becker, P., Bohatý, L., & Fiebig, M. (2009). Observation and Coupling of Domains in a Spin-Spiral Multiferroic. Physical Review Letters, 102(10). doi:10.1103/physrevlett.102.107202 es_ES
dc.description.references Urcelay-Olabarria, I., Perez-Mato, J. M., Ribeiro, J. L., García-Muñoz, J. L., Ressouche, E., Skumryev, V., & Mukhin, A. A. (2013). Incommensurate magnetic structures of multiferroic MnWO4studied within the superspace formalism. Physical Review B, 87(1). doi:10.1103/physrevb.87.014419 es_ES
dc.description.references Nojiri, H., Yoshii, S., Yasui, M., Okada, K., Matsuda, M., Jung, J.-S., … Gaulin, B. D. (2011). Neutron Laue Diffraction Study on the Magnetic Phase Diagram of MultiferroicMnWO4under Pulsed High Magnetic Fields. Physical Review Letters, 106(23). doi:10.1103/physrevlett.106.237202 es_ES
dc.description.references Chaudhury, R. P., Yen, F., dela Cruz, C. R., Lorenz, B., Wang, Y. Q., Sun, Y. Y., & Chu, C. W. (2008). Thermal expansion and pressure effect in. Physica B: Condensed Matter, 403(5-9), 1428-1430. doi:10.1016/j.physb.2007.10.327 es_ES
dc.description.references Macavei, J., & Schulz, H. (1993). The crystal structure of wolframite type tungstates at high pressure. Zeitschrift für Kristallographie - Crystalline Materials, 207(2). doi:10.1524/zkri.1993.207.part-2.193 es_ES
dc.description.references Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202 es_ES
dc.description.references Ruiz-Fuertes, J., Errandonea, D., Gomis, O., Friedrich, A., & Manjón, F. J. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics, 115(4), 043510. doi:10.1063/1.4863236 es_ES
dc.description.references Dai, R. C., Ding, X., Wang, Z. P., & Zhang, Z. M. (2013). Pressure and temperature dependence of Raman scattering of MnWO4. Chemical Physics Letters, 586, 76-80. doi:10.1016/j.cplett.2013.09.035 es_ES
dc.description.references Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116 es_ES
dc.description.references Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112 es_ES
dc.description.references Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848 es_ES
dc.description.references López-Moreno, S., Romero, A. H., Rodríguez-Hernández, P., & Muñoz, A. (2009). Ab initiocalculations of the wolframite MnWO4under high pressure. High Pressure Research, 29(4), 578-581. doi:10.1080/08957950903438481 es_ES
dc.description.references Boehler, R. (2006). New diamond cell for single-crystal x-ray diffraction. Review of Scientific Instruments, 77(11), 115103. doi:10.1063/1.2372734 es_ES
dc.description.references Iliev, M. N., Gospodinov, M. M., & Litvinchuk, A. P. (2009). Raman spectroscopy ofMnWO4. Physical Review B, 80(21). doi:10.1103/physrevb.80.212302 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Dewaele, A., Datchi, F., Loubeyre, P., & Mezouar, M. (2008). High pressure–high temperature equations of state of neon and diamond. Physical Review B, 77(9). doi:10.1103/physrevb.77.094106 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07 es_ES
dc.description.references Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 es_ES
dc.description.references Le Bail, A. (2005). Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction, 20(4), 316-326. doi:10.1154/1.2135315 es_ES
dc.description.references Rothkirch, A., Gatta, G. D., Meyer, M., Merkel, S., Merlini, M., & Liermann, H.-P. (2013). Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. Journal of Synchrotron Radiation, 20(5), 711-720. doi:10.1107/s0909049513018621 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Ruiz-Fuertes, J., Errandonea, D., Lacomba-Perales, R., Segura, A., González, J., Rodríguez, F., … Tu, C. Y. (2010). High-pressure structural phase transitions inCuWO4. Physical Review B, 81(22). doi:10.1103/physrevb.81.224115 es_ES
dc.description.references Rocquefelte, X., Schwarz, K., Blaha, P., Kumar, S., & van den Brink, J. (2013). Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nature Communications, 4(1). doi:10.1038/ncomms3511 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem