- -

Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Balaguer Ramírez, María es_ES
dc.contributor.author Yoo, C.Y. es_ES
dc.contributor.author Bouwmeester, H.J.M es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2016-07-25T11:02:46Z
dc.date.available 2016-07-25T11:02:46Z
dc.date.issued 2013
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10251/68087
dc.description.abstract Bulk ionic and electronic transport properties and the rate of oxygen surface exchange of Tb-doped ceria have been evaluated as a function of Tb concentration, aiming to assess the potential use of the materials as high-temperature oxygen-transport membranes and oxygen reduction catalysts. The materials were synthesized by the co-precipitation method. Cobalt oxide (2 mol%) was added in order to improve sinterability and conductivity. The materials were studied by means of X-ray diffraction (XRD), temperatureprogrammed desorption (TPD), thermogravimetry (TG), DC-conductivity and UV-vis spectrophotometry. The results indicate that the extent of mixed ionic electronic conductivity is a function of temperature and can be tuned by modifying the Tb- (and Co-doping) concentration. Low Tb-content materials (x ¿ 0.1 and 0.2) are predominant ionic conductors, but the materials with 50 mol% Tb show both p-type electronic and ionic conductivity. The enhanced electronic conduction in Ce0.5Tb0.5O2 d is associated with narrowing of the band gap upon doping ceria with Tb. In addition, the surface chemistry of the samples was investigated by means of X-ray photoelectron spectroscopy (XPS) and pulse isotopic exchange (PIE). The surface exchange rate is found to increase on increasing the level of Tb doping. The highest surface exchange rates in this study are found for materials doped with 50 mol% Tb. es_ES
dc.description.sponsorship Funding from the Spanish Government (BES-2009-015835, ENE2011-24761 and SEV-2012-0267 grants) and Helmholtz Association (MEM-BRAIN Portfolio) is kindly acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3ta11610g
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2009-015835-2/ES/BES-2009-015835-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Balaguer Ramírez, M.; Yoo, C.; Bouwmeester, H.; Serra Alfaro, JM. (2013). Bulk transport and oxygen surface exchange of the mixed ionic-electronic conductor Ce1 xTbxO2-d (x=0.1, 0.2, 0.5). Journal of Materials Chemistry. 1(35):10234-10242. https://doi.org/10.1039/c3ta11610g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3ta11610g es_ES
dc.description.upvformatpinicio 10234 es_ES
dc.description.upvformatpfin 10242 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 35 es_ES
dc.relation.senia 246470 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Helmholtz Association of German Research Centers es_ES
dc.description.references Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36(5), 581-625. doi:10.1016/j.pecs.2010.02.001 es_ES
dc.description.references Lobera, M. P., Balaguer, M., Garcia-Fayos, J., & Serra, J. M. (2012). Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor. ChemCatChem, 4(12), 2102-2111. doi:10.1002/cctc.201200212 es_ES
dc.description.references Sunarso, J., Baumann, S., Serra, J. M., Meulenberg, W. A., Liu, S., Lin, Y. S., & Diniz da Costa, J. C. (2008). Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 320(1-2), 13-41. doi:10.1016/j.memsci.2008.03.074 es_ES
dc.description.references Fontaine, M.-L., Larring, Y., Norby, T., Grande, T., & Bredesen, R. (2007). Dense ceramic membranes based on ion conducting oxides. Annales de Chimie Science des Matériaux, 32(2), 197-212. doi:10.3166/acsm.32.197-212 es_ES
dc.description.references Serra, J. M., Vert, V. B., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2008). IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chemistry of Materials, 20(12), 3867-3875. doi:10.1021/cm702508f es_ES
dc.description.references Leo, A., Smart, S., Liu, S., & Diniz da Costa, J. C. (2011). High performance perovskite hollow fibres for oxygen separation. Journal of Membrane Science, 368(1-2), 64-68. doi:10.1016/j.memsci.2010.11.002 es_ES
dc.description.references Liu, S., Tan, X., Shao, Z., & Diniz da Costa, J. C. (2006). Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation. AIChE Journal, 52(10), 3452-3461. doi:10.1002/aic.10966 es_ES
dc.description.references Baumann, S., Serra, J. M., Lobera, M. P., Escolástico, S., Schulze-Küppers, F., & Meulenberg, W. A. (2011). Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 377(1-2), 198-205. doi:10.1016/j.memsci.2011.04.050 es_ES
dc.description.references Tan, X., & Li, K. (2007). Oxygen production using dense ceramic hollow fiber membrane modules with different operating modes. AIChE Journal, 53(4), 838-845. doi:10.1002/aic.11116 es_ES
dc.description.references ARNOLD, M., WANG, H., & FELDHOFF, A. (2007). Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 293(1-2), 44-52. doi:10.1016/j.memsci.2007.01.032 es_ES
dc.description.references Shao, Z. (2000). Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. Journal of Membrane Science, 172(1-2), 177-188. doi:10.1016/s0376-7388(00)00337-9 es_ES
dc.description.references Leo, A., Liu, S., & Costa, J. C. D. da. (2009). Development of mixed conducting membranes for clean coal energy delivery. International Journal of Greenhouse Gas Control, 3(4), 357-367. doi:10.1016/j.ijggc.2008.11.003 es_ES
dc.description.references Hoon Park, J., Pyo Kim, J., & Hwan Son, S. (2009). Oxygen permeation and stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane according to trace elements and oxygen partial pressure in synthetic air. Energy Procedia, 1(1), 369-374. doi:10.1016/j.egypro.2009.01.050 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d es_ES
dc.description.references Fagg, D. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2007). High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids. Journal of Membrane Science, 299(1-2), 1-7. doi:10.1016/j.memsci.2007.04.020 es_ES
dc.description.references Chatzichristodoulou, C., Hendriksen, P. V., Hagen, A., & Grivel, J.-C. (2008). Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions. doi:10.1149/1.3050406 es_ES
dc.description.references Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w es_ES
dc.description.references Lobera, M. P., Serra, J. M., Foghmoes, S. P., Søgaard, M., & Kaiser, A. (2011). On the use of supported ceria membranes for oxyfuel process/syngas production. Journal of Membrane Science, 385-386, 154-161. doi:10.1016/j.memsci.2011.09.031 es_ES
dc.description.references Luo, H., Efimov, K., Jiang, H., Feldhoff, A., Wang, H., & Caro, J. (2010). CO2-Stable and Cobalt-Free Dual-Phase Membrane for Oxygen Separation. Angewandte Chemie International Edition, 50(3), 759-763. doi:10.1002/anie.201003723 es_ES
dc.description.references Mauvy, F., Bassat, J. M., Boehm, E., Dordor, P., Grenier, J. C., & Loup, J. P. (2004). Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient. Journal of the European Ceramic Society, 24(6), 1265-1269. doi:10.1016/s0955-2219(03)00500-4 es_ES
dc.description.references Yashiro, K. (2002). Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk. Solid State Ionics, 152-153, 469-476. doi:10.1016/s0167-2738(02)00375-2 es_ES
dc.description.references Haworth, P. F., Smart, S., Serra, J. M., & Diniz da Costa, J. C. (2012). Combined investigation of bulk diffusion and surface exchange parameters of silver catalyst coated yttrium-doped BSCF membranes. Physical Chemistry Chemical Physics, 14(25), 9104. doi:10.1039/c2cp41226h es_ES
dc.description.references Bouwmeester, H. J. M., Song, C., Zhu, J., Yi, J., van Sint Annaland, M., & Boukamp, B. A. (2009). A novel pulse isotopic exchange technique for rapid determination of the oxygen surface exchange rate of oxide ion conductors. Physical Chemistry Chemical Physics, 11(42), 9640. doi:10.1039/b912712g es_ES
dc.description.references Armstrong, E. N., Duncan, K. L., Oh, D. J., Weaver, J. F., & Wachsman, E. D. (2011). Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes. Journal of The Electrochemical Society, 158(5), B492. doi:10.1149/1.3555122 es_ES
dc.description.references Bouwmeester, H. J. M., Den Otter, M. W., & Boukamp, B. A. (2004). Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ. Journal of Solid State Electrochemistry, 8(9), 599-605. doi:10.1007/s10008-003-0488-3 es_ES
dc.description.references Kumar, A., Babu, S., Karakoti, A. S., Schulte, A., & Seal, S. (2009). Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 25(18), 10998-11007. doi:10.1021/la901298q es_ES
dc.description.references Yoo, C.-Y., Boukamp, B. A., & Bouwmeester, H. J. M. (2010). Oxygen surface exchange kinetics of erbia-stabilized bismuth oxide. Journal of Solid State Electrochemistry, 15(2), 231-236. doi:10.1007/s10008-010-1168-8 es_ES
dc.description.references Ye, F., Mori, T., Ou, D. R., Zou, J., & Drennan, J. (2007). Microstructural characterization of terbium-doped ceria. Materials Research Bulletin, 42(5), 943-949. doi:10.1016/j.materresbull.2006.08.007 es_ES
dc.description.references Hong, S. J., & Virkar, A. V. (1995). Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes. Journal of the American Ceramic Society, 78(2), 433-439. doi:10.1111/j.1151-2916.1995.tb08820.x es_ES
dc.description.references Fagg, D. P., Frade, J. R., Mogensen, M., & Irvine, J. T. S. (2007). Effects of firing schedule on solubility limits and transport properties of ZrO2–TiO2–Y2O3 fluorites. Journal of Solid State Chemistry, 180(8), 2371-2376. doi:10.1016/j.jssc.2007.06.016 es_ES
dc.description.references NICHOLAS, J., & DEJONGHE, L. (2007). Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide. Solid State Ionics, 178(19-20), 1187-1194. doi:10.1016/j.ssi.2007.05.019 es_ES
dc.description.references Fagg, D. P., García-Martin, S., Kharton, V. V., & Frade, J. R. (2009). Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 21(2), 381-391. doi:10.1021/cm802708a es_ES
dc.description.references Fagg, D. P., Marozau, I. P., Shaula, A. L., Kharton, V. V., & Frade, J. R. (2006). Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8−xPr0.2O2−δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 179(11), 3347-3356. doi:10.1016/j.jssc.2006.06.028 es_ES
dc.description.references Duncan, K. L., Wang, Y., Bishop, S. R., Ebrahimi, F., & Wachsman, E. D. (2007). The role of point defects in the physical properties of nonstoichiometric ceria. Journal of Applied Physics, 101(4), 044906. doi:10.1063/1.2559601 es_ES
dc.description.references Tang, C.-W., Wang, C.-B., & Chien, S.-H. (2008). Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta, 473(1-2), 68-73. doi:10.1016/j.tca.2008.04.015 es_ES
dc.description.references Tuller, H. L., Bishop, S. R., Chen, D., Kuru, Y., Kim, J.-J., & Stefanik, T. S. (2012). Praseodymium doped ceria: Model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics, 225, 194-197. doi:10.1016/j.ssi.2012.02.029 es_ES
dc.description.references Schmale, K., Grünebaum, M., Janssen, M., Baumann, S., Schulze-Küppers, F., & Wiemhöfer, H.-D. (2010). Electronic conductivity of Ce0.8Gd0.2−xPrxO2−δ and influence of added CoO. physica status solidi (b), 248(2), 314-322. doi:10.1002/pssb.201046365 es_ES
dc.description.references López, R., & Gómez, R. (2011). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1-7. doi:10.1007/s10971-011-2582-9 es_ES
dc.description.references MURPHY, A. (2007). Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 91(14), 1326-1337. doi:10.1016/j.solmat.2007.05.005 es_ES
dc.description.references Paparazzo, E. (2011). On the curve-fitting of XPS Ce(3d) spectra of cerium oxides. Materials Research Bulletin, 46(2), 323-326. doi:10.1016/j.materresbull.2010.11.009 es_ES
dc.description.references BENJARAM, M. R., GODE, T., & KATTA, L. (2011). Nanosized Unsupported and Alumina-Supported Ceria-Zirconia and Ceria-Terbia Solid Solutions for CO Oxidation. Chinese Journal of Catalysis, 32(5), 800-806. doi:10.1016/s1872-2067(10)60227-6 es_ES
dc.description.references Larachi, F., Pierre, J., Adnot, A., & Bernis, A. (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Applied Surface Science, 195(1-4), 236-250. doi:10.1016/s0169-4332(02)00559-7 es_ES
dc.description.references Nagpure, I. M., Pitale, S. S., Coetsee, E., Ntwaeaborwa, O. M., Terblans, J. J., & Swart, H. C. (2011). Low voltage electron induced cathodoluminescence degradation and surface characterization of Sr3(PO4)2:Tb phosphor. Applied Surface Science, 257(23), 10147-10155. doi:10.1016/j.apsusc.2011.07.008 es_ES
dc.description.references Blanco, G., Pintado, J. M., Bernal, S., Cauqui, M. A., Corchado, M. P., Galtayries, A., … Drube, W. (2002). Influence of the nature of the noble metal (Rh,Pt) on the low-temperature reducibility of a Ce/Tb mixed oxide with application as TWC component. Surface and Interface Analysis, 34(1), 120-124. doi:10.1002/sia.1266 es_ES
dc.description.references Sarma, D. D., & Rao, C. N. R. (1980). XPES studies of oxides of second- and third-row transition metals including rare earths. Journal of Electron Spectroscopy and Related Phenomena, 20(1), 25-45. doi:10.1016/0368-2048(80)85003-1 es_ES
dc.description.references Zsoldos, Z., & Guczi, L. (1992). Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer. The Journal of Physical Chemistry, 96(23), 9393-9400. doi:10.1021/j100202a061 es_ES
dc.description.references Aspromonte, S. G., Sastre, Á., Boix, A. V., Cocero, M. J., & Alonso, E. (2012). Cobalt oxide nanoparticles on mesoporous MCM-41 and Al-MCM-41 by supercritical CO2 deposition. Microporous and Mesoporous Materials, 148(1), 53-61. doi:10.1016/j.micromeso.2011.07.014 es_ES
dc.description.references Lane, J. (2000). Oxygen surface exchange on gadolinia doped ceria. Solid State Ionics, 136-137(1-2), 927-932. doi:10.1016/s0167-2738(00)00530-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem