- -

CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peña Monferrer, Carlos es_ES
dc.contributor.author Muñoz-Cobo González, José Luís es_ES
dc.contributor.author Chiva Vicent, Sergio es_ES
dc.date.accessioned 2016-07-28T12:44:57Z
dc.date.available 2016-07-28T12:44:57Z
dc.date.issued 2014
dc.identifier.issn 1687-6075
dc.identifier.uri http://hdl.handle.net/10251/68397
dc.description.abstract Nuclear fuel bundles include spacers essentially for mechanical stability and to influence the flow dynamics and heat transfer phenomena along the fuel rods. This work presents the analysis of the turbulence effects of a split-type and swirl-type spacer-grid geometries on single phase in a PWR (pressurized water reactor) rod bundle. Various computational fluid dynamics (CFD) calculations have been performed and the results validated with the experiments of the OECD/NEA-KAERI rod bundle CFD blind benchmark exercise on turbulent mixing in a rod bundle with spacers at the MATiS-H facility. Simulation of turbulent phenomena downstream of the spacer-grid presents high complexity issues; a wide range of length scales are present in the domain increasing the difficulty of defining in detail the transient nature of turbulent flowwith ordinary turbulence models. This paper contains a complete description of the procedure to obtain a validated CFD model for the simulation of the spacer-grids. Calculations were performed with the commercial code ANSYS CFX using large eddy simulation (LES) turbulence model and the CFD modeling procedure validated by comparison with measurements to determine their suitability in the prediction of the turbulence phenomena. es_ES
dc.description.sponsorship The authors sincerely thank the Consejo de Seguridad Nuclear (CSN) (Spanish Nuclear Safety Council) and the "Plan Nacional de I+D+i" Project EXPERTISER ENE2010-21368-C02-01 and ENE2010-21368-C02-02 for funding the project. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Science and Technology of Nuclear Installations es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject FLOW es_ES
dc.subject REACTOR es_ES
dc.subject MODEL es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/635651
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2010-21368-C02-02/ES/REALIZACION Y MODELACION DE EXPERIMENTOS DE EFECTOS SEPARADOS CON FLUJO BIFASICO RELEVANTES PARA LA SEGURIDAD DE REACTORES NUCLEARES. CONTRIBUCION UJI/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2010-21368-C02-01/ES/REALIZACION Y MODELACION DE EXPERIMENTOS DE EFECTOS SEPARADOS CON FLUJO BIFASICO RELEVANTES PARA LA SEGURIDAD DE REACTORES NUCLEARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica es_ES
dc.description.bibliographicCitation Peña Monferrer, C.; Muñoz-Cobo González, JL.; Chiva Vicent, S. (2014). CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle. Science and Technology of Nuclear Installations. 2014:1-15. doi:10.1155/2014/635651 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 279610 es_ES
dc.identifier.eissn 1687-6083
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo de Seguridad Nuclear es_ES
dc.description.references Pioro, I. L., Groeneveld, D. C., Doerffer, S. S., Guo, Y., Cheng, S. C., & Vasić, A. (2002). Effects of flow obstacles on the critical heat flux in a vertical tube cooled with upward flow of R-134a. International Journal of Heat and Mass Transfer, 45(22), 4417-4433. doi:10.1016/s0017-9310(02)00150-3 es_ES
dc.description.references Yang, S. K., & Chung, M. K. (1998). Turbulent Flow Through Spacer Grids in Rod Bundles. Journal of Fluids Engineering, 120(4), 786-791. doi:10.1115/1.2820739 es_ES
dc.description.references Caraghiaur, D., Anglart, H., & Frid, W. (2009). Experimental investigation of turbulent flow through spacer grids in fuel rod bundles. Nuclear Engineering and Design, 239(10), 2013-2021. doi:10.1016/j.nucengdes.2009.05.029 es_ES
dc.description.references Dominguez-Ontiveros, E. E., Hassan, Y. A., Conner, M. E., & Karoutas, Z. (2012). Experimental benchmark data for PWR rod bundle with spacer-grids. Nuclear Engineering and Design, 253, 396-405. doi:10.1016/j.nucengdes.2012.09.003 es_ES
dc.description.references Nematollahi, M. R., & Nazifi, M. (2008). Enhancement of heat transfer in a typical pressurized water reactor by different mixing vanes on spacer grids. Energy Conversion and Management, 49(7), 1981-1988. doi:10.1016/j.enconman.2007.12.016 es_ES
dc.description.references Pazirandeh, A., Ghaseminejad, S., & Ghaseminejad, M. (2011). Effects of various spacer grid modeling on the neutronic parameters of the VVER-1000 reactor. Annals of Nuclear Energy, 38(9), 1978-1986. doi:10.1016/j.anucene.2011.04.020 es_ES
dc.description.references Jayanti, S., & Rajesh Reddy, K. (2013). Effect of spacer grids on CHF in nuclear rod bundles. Nuclear Engineering and Design, 261, 66-75. doi:10.1016/j.nucengdes.2013.03.044 es_ES
dc.description.references SMAGORINSKY, J. (1963). GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS. Monthly Weather Review, 91(3), 99-164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2 es_ES
dc.description.references Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760-1765. doi:10.1063/1.857955 es_ES
dc.description.references Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41(2), 453-480. doi:10.1017/s0022112070000691 es_ES
dc.description.references Deardorff, J. W. (1973). The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospheric Turbulence. Journal of Fluids Engineering, 95(3), 429-438. doi:10.1115/1.3447047 es_ES
dc.description.references Ciofalo, M. (1994). Large-Eddy Simulation: A Critical Survey of Models and Applications. Advances in Heat Transfer, 321-419. doi:10.1016/s0065-2717(08)70196-5 es_ES
dc.description.references Lesieur, M., & Metais, O. (1996). New Trends in Large-Eddy Simulations of Turbulence. Annual Review of Fluid Mechanics, 28(1), 45-82. doi:10.1146/annurev.fl.28.010196.000401 es_ES
dc.description.references Guermond, J.-L., Oden, J. T., & Prudhomme, S. (2004). Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows. Journal of Mathematical Fluid Mechanics, 6(2), 194-248. doi:10.1007/s00021-003-0091-5 es_ES
dc.description.references Lee, J. R., Kim, J., & Song, C.-H. (2014). Synthesis of the turbulent mixing in a rod bundle with vaned spacer grids based on the OECD-KAERI CFD benchmark exercise. Nuclear Engineering and Design, 279, 3-18. doi:10.1016/j.nucengdes.2014.03.008 es_ES
dc.description.references Meyers, J., Geurts, B. J., & Sagaut, P. (Eds.). (2008). Quality and Reliability of Large-Eddy Simulations. Ercoftac Series. doi:10.1007/978-1-4020-8578-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem