- -

Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero Morcillo, Tania es_ES
dc.contributor.author Valverde Muñoz, Francisco Javier es_ES
dc.contributor.author Piñeiro López, Lucía es_ES
dc.contributor.author Muñoz Roca, María del Carmen es_ES
dc.contributor.author Romero, Tomás es_ES
dc.contributor.author Molina, Pedro es_ES
dc.contributor.author Real, José A. es_ES
dc.date.accessioned 2016-09-27T16:26:41Z
dc.date.available 2016-09-27T16:26:41Z
dc.date.issued 2015
dc.identifier.issn 1477-9226
dc.identifier.uri http://hdl.handle.net/10251/70512
dc.description.abstract In the search for new multifunctional spin crossover molecular materials, here we describe the synthesis, crystal structures and magnetic and photomagnetic properties of the complexes trans-[Fe(Fctzpy)2(NCX)2]·CHCl3 where Fc-tzpy is the ferrocene-appended ligand 4-(2-pyridyl)-1H-1,2,3-triazol- 1-ylferrocene, X = S (1) and X = Se (2). Both complexes display thermal- and light-induced (LIESST) spin crossover properties characterised by T1/2 = 85 and 168 K, ΔS = 55 and 66 J K−1 mol−1 , ΔH = 4.7 and 11.1 kJ mol−1 and TLIESST = 47 K and 39 K for 1 and 2 respectively. The crystal structure of 1 and 2 measured at 275 K is consistent with the iron(II) ion in the high-spin state while the crystal structure of 2 at 120 K denotes the occurrence of complete transformation to the low-spin state. es_ES
dc.description.sponsorship The research reported here was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and FEDER funds (CTQ2013-46275-P) and Generalitat Valenciana (PROMETEO/2012/049). T.R.M. and F.J.V.M. thank MINECO for a FPI grant. L.P.L. thanks the Generalitat Valenciana and the Universidad de Valencia for a predoctoral fellowship. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Dalton Transactions es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5dt03084f
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-46275-P/ES/SENSORES Y MEMORIAS BASADOS EN MATERIALES BIESTABLES CON TRANSICION DE ESPIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F049/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Romero Morcillo, T.; Valverde Muñoz, FJ.; Piñeiro López, L.; Muñoz Roca, MDC.; Romero, T.; Molina, P.; Real, JA. (2015). Spin crossover in iron(II) complexes with ferrocene-bearing triazole-pyridine ligands. Dalton Transactions. 44:18911-18918. https://doi.org/10.1039/c5dt03084f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c5dt03084f es_ES
dc.description.upvformatpinicio 18911 es_ES
dc.description.upvformatpfin 18918 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.relation.senia 295340 es_ES
dc.identifier.eissn 1477-9234
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat de València es_ES
dc.description.references Goodwin, H. A. (1976). Spin Transitions in six-coordinate iron(II) complexes. Coordination Chemistry Reviews, 18(3), 293-325. doi:10.1016/s0010-8545(00)80430-0 es_ES
dc.description.references Gütlich, P. (s. f.). Spin crossover in iron(II)-complexes. Metal Complexes, 83-195. doi:10.1007/bfb0111269 es_ES
dc.description.references Konig, E., Ritter, G., & Kulshreshtha, S. K. (1985). The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chemical Reviews, 85(3), 219-234. doi:10.1021/cr00067a003 es_ES
dc.description.references Hauser, A. (1995). Intersystem Crossing in Iron(II) Coordination Compounds: A Model Process Between Classical and Quantum Mechanical Behaviour. Comments on Inorganic Chemistry, 17(1), 17-40. doi:10.1080/02603599508035780 es_ES
dc.description.references König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2 es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 es_ES
dc.description.references Sato, O. (2003). Optically Switchable Molecular Solids:  Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization. Accounts of Chemical Research, 36(9), 692-700. doi:10.1021/ar020242z es_ES
dc.description.references Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 es_ES
dc.description.references Topics in Current Chemistry, ed. P. Gütlich and H. A. Goodwin, 2004, vol. 233–235 es_ES
dc.description.references Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c es_ES
dc.description.references Halcrow, M. A. (2009). Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coordination Chemistry Reviews, 253(21-22), 2493-2514. doi:10.1016/j.ccr.2009.07.009 es_ES
dc.description.references Olguín, J., & Brooker, S. (2011). Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, 255(1-2), 203-240. doi:10.1016/j.ccr.2010.08.002 es_ES
dc.description.references Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a es_ES
dc.description.references Spin-Crossover Materials: Properties and Applications, ed. M. A. Halcrow, Wiley, UK, 2013 es_ES
dc.description.references Matsuda, M., Isozaki, H., & Tajima, H. (2008). Reproducible on–off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films, 517(4), 1465-1467. doi:10.1016/j.tsf.2008.09.034 es_ES
dc.description.references Salmon, L., Molnár, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631a es_ES
dc.description.references Titos-Padilla, S., Herrera, J. M., Chen, X.-W., Delgado, J. J., & Colacio, E. (2011). Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie International Edition, 50(14), 3290-3293. doi:10.1002/anie.201007847 es_ES
dc.description.references Garcia, Y., Robert, F., Naik, A. D., Zhou, G., Tinant, B., Robeyns, K., … Piraux, L. (2011). Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. Journal of the American Chemical Society, 133(40), 15850-15853. doi:10.1021/ja205974q es_ES
dc.description.references Wang, C.-F., Li, R.-F., Chen, X.-Y., Wei, R.-J., Zheng, L.-S., & Tao, J. (2014). Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes. Angewandte Chemie International Edition, 54(5), 1574-1577. doi:10.1002/anie.201410454 es_ES
dc.description.references Ruiz, E. (2014). Charge transport properties of spin crossover systems. Phys. Chem. Chem. Phys., 16(1), 14-22. doi:10.1039/c3cp54028f es_ES
dc.description.references Alam, M. S., Stocker, M., Gieb, K., Müller, P., Haryono, M., Student, K., & Grohmann, A. (2010). Spin-State Patterns in Surface-Grafted Beads of Iron(II) Complexes. Angewandte Chemie International Edition, 49(6), 1159-1163. doi:10.1002/anie.200905062 es_ES
dc.description.references Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821 es_ES
dc.description.references Gopakumar, T. G., Matino, F., Naggert, H., Bannwarth, A., Tuczek, F., & Berndt, R. (2012). Electron-Induced Spin Crossover of Single Molecules in a Bilayer on Gold. Angewandte Chemie International Edition, 51(25), 6262-6266. doi:10.1002/anie.201201203 es_ES
dc.description.references Baadji, N., & Sanvito, S. (2012). Giant Resistance Change across the Phase Transition in Spin-Crossover Molecules. Physical Review Letters, 108(21). doi:10.1103/physrevlett.108.217201 es_ES
dc.description.references Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., … Wulfhekel, W. (2012). Robust spin crossover and memristance across a single molecule. Nature Communications, 3(1). doi:10.1038/ncomms1940 es_ES
dc.description.references Rotaru, A., Gural’skiy, I. A., Molnár, G., Salmon, L., Demont, P., & Bousseksou, A. (2012). Spin state dependence of electrical conductivity of spin crossover materials. Chem. Commun., 48(35), 4163-4165. doi:10.1039/c2cc30528c es_ES
dc.description.references Rotaru, A., Dugay, J., Tan, R. P., Guralskiy, I. A., Salmon, L., Demont, P., … Bousseksou, A. (2013). Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Advanced Materials, 25(12), 1745-1749. doi:10.1002/adma.201203020 es_ES
dc.description.references Phan, H., Benjamin, S. M., Steven, E., Brooks, J. S., & Shatruk, M. (2014). Photomagnetic Response in Highly Conductive Iron(II) Spin-Crossover Complexes with TCNQ Radicals. Angewandte Chemie International Edition, 54(3), 823-827. doi:10.1002/anie.201408680 es_ES
dc.description.references Gural’skiy, I. A., Quintero, C. M., Costa, J. S., Demont, P., Molnár, G., Salmon, L., … Bousseksou, A. (2014). Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C, 2(16), 2949-2955. doi:10.1039/c4tc00267a es_ES
dc.description.references Bartual-Murgui, C., Akou, A., Thibault, C., Molnár, G., Vieu, C., Salmon, L., & Bousseksou, A. (2015). Spin-crossover metal–organic frameworks: promising materials for designing gas sensors. Journal of Materials Chemistry C, 3(6), 1277-1285. doi:10.1039/c4tc02441a es_ES
dc.description.references Dugay, J., Giménez-Marqués, M., Kozlova, T., Zandbergen, H. W., Coronado, E., & van der Zant, H. S. J. (2015). Spin Switching in Electronic Devices Based on 2D Assemblies of Spin-Crossover Nanoparticles. Advanced Materials, 27(7), 1288-1293. doi:10.1002/adma.201404441 es_ES
dc.description.references Real, J. A., Andres, E., Munoz, M. C., Julve, M., Granier, T., Bousseksou, A., & Varret, F. (1995). Spin Crossover in a Catenane Supramolecular System. Science, 268(5208), 265-267. doi:10.1126/science.268.5208.265 es_ES
dc.description.references Halder, G. J. (2002). Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 298(5599), 1762-1765. doi:10.1126/science.1075948 es_ES
dc.description.references Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie International Edition, 46(12), 2059-2062. doi:10.1002/anie.200603977 es_ES
dc.description.references Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., … Kepert, C. J. (2008). Single-Crystal to Single-Crystal Structural Transformation and Photomagnetic Properties of a Porous Iron(II) Spin-Crossover Framework. Journal of the American Chemical Society, 130(9), 2869-2876. doi:10.1021/ja077958f es_ES
dc.description.references Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039 es_ES
dc.description.references Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379 es_ES
dc.description.references Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d es_ES
dc.description.references Arcís-Castillo, Z., Muñoz-Lara, F. J., Muñoz, M. C., Aravena, D., Gaspar, A. B., Sánchez-Royo, J. F., … Real, J. A. (2013). Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer. Inorganic Chemistry, 52(21), 12777-12783. doi:10.1021/ic4020477 es_ES
dc.description.references Piñeiro-López, L., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2014). Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun., 50(15), 1833-1835. doi:10.1039/c3cc48595a es_ES
dc.description.references Gaspar, A. B., Muñoz, M. C., & Real, J. A. (2006). Dinuclear iron(ii) spin crossover compounds: singular molecular materials for electronics. J. Mater. Chem., 16(26), 2522-2533. doi:10.1039/b603488h es_ES
dc.description.references Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S., & Tokoro, H. (2011). Light-induced spin-crossover magnet. Nature Chemistry, 3(7), 564-569. doi:10.1038/nchem.1067 es_ES
dc.description.references Ohkoshi, S., Takano, S., Imoto, K., Yoshikiyo, M., Namai, A., & Tokoro, H. (2013). 90-degree optical switching of output second-harmonic light in chiral photomagnet. Nature Photonics, 8(1), 65-71. doi:10.1038/nphoton.2013.310 es_ES
dc.description.references Lacroix, P. G., Malfant, I., Real, J.-A., & Rodriguez, V. (2013). From Magnetic to Nonlinear Optical Switches in Spin-Crossover Complexes. European Journal of Inorganic Chemistry, 2013(5-6), 615-627. doi:10.1002/ejic.201201151 es_ES
dc.description.references Scott, H. S., Nafady, A., Cashion, J. D., Bond, A. M., Moubaraki, B., Murray, K. S., & Neville, S. M. (2013). A ferrocenyl-substituted 1,2,4-triazole ligand and its FeII, NiII and CuII 1D-chain complexes. Dalton Transactions, 42(28), 10326. doi:10.1039/c3dt50384d es_ES
dc.description.references Scott, H. S., Gartshore, C. J., Guo, S.-X., Moubaraki, B., Bond, A. M., Batten, S. R., & Murray, K. S. (2014). Ferrocene-appended ligands for use in spin crossover-redox «hybrid» complexes of iron(ii) and cobalt(ii). Dalton Trans., 43(40), 15212-15220. doi:10.1039/c4dt02126f es_ES
dc.description.references Romero, T., Orenes, R. A., Espinosa, A., Tárraga, A., & Molina, P. (2011). Synthesis, Structural Charaterization, and Electrochemical and Optical Properties of Ferrocene–Triazole–Pyridine Triads. Inorganic Chemistry, 50(17), 8214-8224. doi:10.1021/ic200745q es_ES
dc.description.references Balaji, B., Banik, B., Sasmal, P. K., Maity, B., Majumdar, R., Dighe, R. R., & Chakravarty, A. R. (2011). Ferrocene-Conjugated Oxidovanadium(IV) Complexes as Potent Near-IR Light Photocytotoxic Agents. European Journal of Inorganic Chemistry, 2012(1), 126-135. doi:10.1002/ejic.201100836 es_ES
dc.description.references Farlow, B., Nile, T. A., Walsh, J. L., & McPhail, A. T. (1993). Synthesis, x-ray structural determination and coordination chemistry of 4′-ferrocenyl-2,2′:6′,2″-terpyridine. Polyhedron, 12(23), 2891-2894. doi:10.1016/s0277-5387(00)80074-1 es_ES
dc.description.references Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., … Real, J. A. (1999). Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. Inorganica Chimica Acta, 291(1-2), 279-288. doi:10.1016/s0020-1693(99)00128-0 es_ES
dc.description.references Moliner, N., Gaspar, A. B., Muñoz, M. C., Niel, V., Cano, J., & Real, J. A. (2001). Light- and Thermal-Induced Spin Crossover in {Fe(abpt)2[N(CN)2]2}. Synthesis, Structure, Magnetic Properties, and High-Spin ↔ Low-Spin Relaxation Studies. Inorganic Chemistry, 40(16), 3986-3991. doi:10.1021/ic0100976 es_ES
dc.description.references Gaspar, A. B., Carmen Mu�oz, M., Moliner, N., Ksenofontov, V., Levchenko, G., G�tlich, P., & Antonio Real, J. (2003). Polymorphism and Pressure Driven Thermal Spin Crossover Phenomenon in [Fe(abpt) 2 (NCX) 2 ] (X = S, and Se): Synthesis, Structure and Magnetic Properties. Monatshefte f�r Chemie / Chemical Monthly, 134(2), 285-294. doi:10.1007/s00706-002-0508-5 es_ES
dc.description.references Niel, V., Gaspar, A. B., Muñoz, M. C., Abarca, B., Ballesteros, R., & Real, J. A. (2003). Spin Crossover Behavior in the Iron(II)−2-pyridyl[1,2,3]triazolo[1,5-a]pyridine System:  X-ray Structure, Calorimetric, Magnetic, and Photomagnetic Studies. Inorganic Chemistry, 42(15), 4782-4788. doi:10.1021/ic034366z es_ES
dc.description.references Arcís-Castillo, Z., Piñeiro-López, L., Muñoz, M. C., Ballesteros, R., Abarca, B., & Real, J. A. (2013). Structural, magnetic and calorimetric studies of a crystalline phase of the spin crossover compound [Fe(tzpy)2(NCSe)2]. CrystEngComm, 15(17), 3455. doi:10.1039/c3ce00003f es_ES
dc.description.references Klingele, J., Kaase, D., Hilgert, J., Steinfeld, G., Klingele, M. H., & Lach, J. (2010). Triazolopyridines as ligands: structural diversity in iron(ii), cobalt(ii), nickel(ii) and copper(ii) complexes of 3-(2-pyridyl)-[1,2,4]triazolo[4,3-a]pyridine (L10) and spin crossover in [FeII(L10)2(NCS)2]. Dalton Transactions, 39(19), 4495. doi:10.1039/b925107c es_ES
dc.description.references Nihei, M., Han, L., & Oshio, H. (2007). Magnetic Bistability and Single-Crystal-to-Single-Crystal Transformation Induced by Guest Desorption. Journal of the American Chemical Society, 129(17), 5312-5313. doi:10.1021/ja069120i es_ES
dc.description.references Martin, J.-P., Zarembowitch, J., Bousseksou, A., Dworkin, A., Haasnoot, J. G., & Varret, F. (1994). Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Moessbauer-Effect Properties of [FexCo1-x(4,4’-bis-1,2,4-triazole)2(NCS)2].cntdot.H2O Mixed-Crystal Compounds. Inorganic Chemistry, 33(26), 6325-6333. doi:10.1021/ic00104a049 es_ES
dc.description.references Martin, J.-P., Zarembowitch, J., Dworkin, A., Haasnoot, J. G., & Codjovi, E. (1994). Solid-State Effects in Spin Transitions: Influence of Iron(II) Dilution on the Magnetic and Calorimetric Properties of the Series [FexNi1-x(4,4’-bis(1,2,4-triazole))2(NCS)2].cntdot.H2O. Inorganic Chemistry, 33(12), 2617-2623. doi:10.1021/ic00090a023 es_ES
dc.description.references Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511 es_ES
dc.description.references Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0 es_ES
dc.description.references Hauser, A. (1986). Reversibility of light-induced excited spin state trapping in the Fe(ptz)6(BF4)2, and the Zn1−xFex(ptz)6(BF4)2 spin-crossover systems. Chemical Physics Letters, 124(6), 543-548. doi:10.1016/0009-2614(86)85073-4 es_ES
dc.description.references Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b es_ES
dc.description.references Hauser, A. (1991). Intersystem crossing in Fe(II) coordination compounds. Coordination Chemistry Reviews, 111, 275-290. doi:10.1016/0010-8545(91)84034-3 es_ES
dc.description.references Hauser, A., Vef, A., & Adler, P. (1991). Intersystem crossing dynamics in Fe(II) coordination compounds. The Journal of Chemical Physics, 95(12), 8710-8717. doi:10.1063/1.461255 es_ES
dc.description.references Hauser, A., Enachescu, C., Daku, M. L., Vargas, A., & Amstutz, N. (2006). Low-temperature lifetimes of metastable high-spin states in spin-crossover and in low-spin iron(II) compounds: The rule and exceptions to the rule. Coordination Chemistry Reviews, 250(13-14), 1642-1652. doi:10.1016/j.ccr.2005.12.006 es_ES
dc.description.references Létard, J.-F., Capes, L., Chastanet, G., Moliner, N., Létard, S., Real, J.-A., & Kahn, O. (1999). Critical temperature of the LIESST effect in iron(II) spin crossover compounds. Chemical Physics Letters, 313(1-2), 115-120. doi:10.1016/s0009-2614(99)01036-2 es_ES
dc.description.references J. F. Létard , G.Chastanet, P.Guionneau and C.Desplanches, in Spin-Crossover Materials: Properties and Applications, ed. M. A. Halcrow, Wiley, UK, 2013, pp. 475–506 es_ES
dc.description.references Di Bella, S. (2001). Chemical Society Reviews, 30(6), 355-366. doi:10.1039/b100820j es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem