- -

Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez, Cristina es_ES
dc.contributor.author Verboekend, Danny es_ES
dc.contributor.author Pérez-Ramírez, Javier es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2016-10-11T06:54:12Z
dc.date.available 2016-10-11T06:54:12Z
dc.date.issued 2013
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/71585
dc.description.abstract Hierarchical USY zeolites obtained by scalable and affordable post-synthetic modifications (PSM) are stabilized by means of REO ion exchange and/or hydrothermal treatments, leading to FCC catalysts with improved hydrothermal stability, increased bottoms conversion capacity and improved product selectivity, as compared to a conventional commercial USY based catalyst of comparable activity. The stabilized mesoporous USY yields more and better quality diesel with a reduced content of polyaromatic compounds, while producing lower amounts of gases but with a LPG fraction enriched in propene and butenes. The obtained selectivity slate is attributed to the combination of appropriate Bronsted acidity and reduced diffusion pathway in the zeolite crystals. A detailed characterization relates the physicochemical, textural and morphological changes induced by the PSM to the resulting catalytic behavior. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish Government MINECO, Consolider Ingenio 2010 (project MUL-TICAT). The Swiss National Science Foundation (Project Number 200021-134572) is acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SOLID-STATE NMR es_ES
dc.subject FCC CATALYSTS es_ES
dc.subject GAS-OIL es_ES
dc.subject HYDROTHERMAL STABILITY es_ES
dc.subject FRAMEWORK ALUMINUM es_ES
dc.subject DEALUMINATED HY es_ES
dc.subject Y-ZEOLITES es_ES
dc.subject UNIT-CELL es_ES
dc.subject SELECTIVITY es_ES
dc.subject ZSM-5 es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2cy20688a
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//200021-134572/CH/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Martínez, C.; Verboekend, D.; Pérez-Ramírez, J.; Corma Canós, A. (2013). Stabilized hierarchical USY zeolite catalysts for simultaneous increase in diesel and LPG olefinicity during catalytic cracking. Catalysis Science and Technology. 3(4):972-981. doi:10.1039/c2cy20688a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2cy20688a es_ES
dc.description.upvformatpinicio 972 es_ES
dc.description.upvformatpfin 981 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 236132 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Swiss National Science Foundation
dc.description.references Corma, A., & Wojciechowski, B. W. (1985). The Chemistry of Catalytic Cracking. Catalysis Reviews, 27(1), 29-150. doi:10.1080/01614948509342358 es_ES
dc.description.references Dwyer, J., Millward, D., O’Malley, P. J., Araya, A., Corma, A., Fornes, V., & Martinez, A. (1990). Synthesis of ZSM-20. Comparison of properties with zeolite Y. Journal of the Chemical Society, Faraday Transactions, 86(6), 1001. doi:10.1039/ft9908601001 es_ES
dc.description.references Haas, A., Harding, D. ., & Nee, J. R. . (1999). FCC catalysts containing the high-silica faujasites EMO and EMT for gas-oil cracking. Microporous and Mesoporous Materials, 28(2), 325-333. doi:10.1016/s1387-1811(98)00247-9 es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Martínez-Triguero, J., Rey, F., & Rius, J. (2002). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 418(6897), 514-517. doi:10.1038/nature00924 es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references ARRIBAS, J. (1987). Influence of framework aluminum gradients on the catalytic activity of Y zeolites: Cracking of gas-oil on Y zeolites dealuminated by different procedures. Journal of Catalysis, 108(1), 135-142. doi:10.1016/0021-9517(87)90160-6 es_ES
dc.description.references Corma, A., Fornés, V., Martínez, A., & Orchillés, A. V. (1988). Parameters in Addition to the Unit Cell That Determine the Cracking Activity and Selectivity of Dealuminated HY Zeolites. Perspectives in Molecular Sieve Science, 542-554. doi:10.1021/bk-1988-0368.ch035 es_ES
dc.description.references Camblor, M. A., Corma, A., Martínez, A., Mocholí, F. A., & Pariente, J. P. (1989). Catalytic cracking of gasoil. Applied Catalysis, 55(1), 65-74. doi:10.1016/s0166-9834(00)82317-9 es_ES
dc.description.references Chen, N. Y., Mitchell, T. O., Olson, D. H., & Pelrine, B. P. (1977). Irreversible Deactivation of Zeolite Fluid Cracking Catalyst. 2. Hydrothermal Stability of Catalysts Containing NH4Y and Rare Earth Y. Industrial & Engineering Chemistry Product Research and Development, 16(3), 247-252. doi:10.1021/i360063a012 es_ES
dc.description.references Sanchez-Castillo, M. A., Madon, R. J., & Dumesic, J. A. (2005). Role of Rare Earth Cations in Y Zeolite for Hydrocarbon Cracking†. The Journal of Physical Chemistry B, 109(6), 2164-2175. doi:10.1021/jp0489875 es_ES
dc.description.references Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k es_ES
dc.description.references Egeblad, K., Christensen, C. H., Kustova, M., & Christensen, C. H. (2008). Templating Mesoporous Zeolites†. Chemistry of Materials, 20(3), 946-960. doi:10.1021/cm702224p es_ES
dc.description.references Serrano, D. P., Aguado, J., & Escola, J. M. (s. f.). Hierarchical zeolites: materials with improved accessibility and enhanced catalytic activity. Catalysis, 253-283. doi:10.1039/9781849732772-00253 es_ES
dc.description.references Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., & Schwieger, W. (2011). Zeolitic Materials with Hierarchical Porous Structures. Advanced Materials, 23(22-23), 2602-2615. doi:10.1002/adma.201100462 es_ES
dc.description.references Van Donk, S., Janssen, A. H., Bitter, J. H., & de Jong, K. P. (2003). Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catalysis Reviews, 45(2), 297-319. doi:10.1081/cr-120023908 es_ES
dc.description.references Hartmann, M. (2004). Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. Angewandte Chemie International Edition, 43(44), 5880-5882. doi:10.1002/anie.200460644 es_ES
dc.description.references Schmidt, W. (2009). Solid Catalysts on the Nanoscale: Design of Complex Morphologies and Pore Structures. ChemCatChem, 1(1), 53-67. doi:10.1002/cctc.200900125 es_ES
dc.description.references Chal, R., Gérardin, C., Bulut, M., & van Donk, S. (2010). Overview and Industrial Assessment of Synthesis Strategies towards Zeolites with Mesopores. ChemCatChem, 3(1), 67-81. doi:10.1002/cctc.201000158 es_ES
dc.description.references Holm, M. S., Taarning, E., Egeblad, K., & Christensen, C. H. (2011). Catalysis with hierarchical zeolites. Catalysis Today, 168(1), 3-16. doi:10.1016/j.cattod.2011.01.007 es_ES
dc.description.references Lei, Q., Zhao, T., Li, F., Zhang, L., & Wang, Y. (2006). Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, (16), 1769. doi:10.1039/b600547k es_ES
dc.description.references García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k es_ES
dc.description.references Dessau, R. M., Valyocsik, E. W., & Goeke, N. H. (1992). Aluminum zoning in ZSM-5 as revealed by selective silica removal. Zeolites, 12(7), 776-779. doi:10.1016/0144-2449(92)90049-u es_ES
dc.description.references Doremieux-Morin, C., Ramsaran, A., Le Van Mao, R., Batamack, P., Heeribout, L., Semmer, V., … Fraissard, J. (1995). 1H broad-line and MAS NMR: application to the study of acid sites of desilicated zeolite ZSM-5. Catalysis Letters, 34(1-2), 139-149. doi:10.1007/bf00808330 es_ES
dc.description.references Le Van Mao, R., Le, S. T., Ohayon, D., Caillibot, F., Gelebart, L., & Denes, G. (1997). Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment. Zeolites, 19(4), 270-278. doi:10.1016/s0144-2449(97)00084-5 es_ES
dc.description.references Čimek, A., Subotić, B., Šmit, I., Tonejc, A., Aiello, R., Crea, F., & Nastro, A. (1997). Dissolution of high-silica zeolites in alkaline solutions II. Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Materials, 8(3-4), 159-169. doi:10.1016/s0927-6513(96)00082-x es_ES
dc.description.references Ohayon, D., Le Van Mao, R., Ciaravino, D., Hazel, H., Cochennec, A., & Rolland, N. (2001). Methods for pore size engineering in ZSM-5 zeolite. Applied Catalysis A: General, 217(1-2), 241-251. doi:10.1016/s0926-860x(01)00611-1 es_ES
dc.description.references Pérez-Ramírez, J., Mitchell, S., Verboekend, D., Milina, M., Michels, N.-L., Krumeich, F., … Erdmann, M. (2011). Expanding the Horizons of Hierarchical Zeolites: Beyond Laboratory Curiosity towards Industrial Realization. ChemCatChem, 3(11), 1731-1734. doi:10.1002/cctc.201100264 es_ES
dc.description.references Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g es_ES
dc.description.references De Jong, K. P., Zečević, J., Friedrich, H., de Jongh, P. E., Bulut, M., van Donk, S., … Fajula, F. (2010). Zeolite Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts. Angewandte Chemie International Edition, 49(52), 10074-10078. doi:10.1002/anie.201004360 es_ES
dc.description.references Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411 es_ES
dc.description.references Al-Sabawi, M., Chen, J., & Ng, S. (2012). Fluid Catalytic Cracking of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review. Energy & Fuels, 26(9), 5355-5372. doi:10.1021/ef3006417 es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Corma, A., Martínez, C., & Sauvanaud, L. (2007). New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 127(1-4), 3-16. doi:10.1016/j.cattod.2007.03.056 es_ES
dc.description.references Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0 es_ES
dc.description.references Fyfe, C. A., Bretherton, J. L., & Lam, L. Y. (2000). Detection of the ‘invisible aluminium’ and characterisation of the multiple aluminium environments in zeolite USY by high-field solid-state NMR. Chemical Communications, (17), 1575-1576. doi:10.1039/b003081n es_ES
dc.description.references Corma, A., Fornés, V., & Rey, F. (1990). Extraction of extra-framework aluminium in ultrastable Y zeolites by (NH4)2SiF6 treatments. Applied Catalysis, 59(1), 267-274. doi:10.1016/s0166-9834(00)82203-4 es_ES
dc.description.references Corma, A., Fornés, V., Melo, F. V., & Herrero, J. (1987). Comparison of the information given by ammonia t.p.d. and pyridine adsorption—desorption on the acidity of dealuminated HY and LaHY zeolite cracking catalysts. Zeolites, 7(6), 559-563. doi:10.1016/0144-2449(87)90098-4 es_ES
dc.description.references Gore, K. U., Abraham, A., Hegde, S. G., Kumar, R., Amoureux, J.-P., & Ganapathy, S. (2002). 29Si and27Al MAS/3Q-MAS NMR Studies of High Silica USY Zeolites. The Journal of Physical Chemistry B, 106(23), 6115-6120. doi:10.1021/jp0143241 es_ES
dc.description.references PINE, L. (1990). Vanadium-catalyzed destruction of USY zeolites. Journal of Catalysis, 125(2), 514-524. doi:10.1016/0021-9517(90)90323-c es_ES
dc.description.references Hagiwara, K., Ebihara, T., Urasato, N., Ozawa, S., & Nakata, S. (2003). Effect of vanadium on USY zeolite destruction in the presence of sodium ions and steam—studies by solid-state NMR. Applied Catalysis A: General, 249(2), 213-228. doi:10.1016/s0926-860x(03)00289-8 es_ES
dc.description.references Sandoval-Díaz, L.-E., Palomeque-Forero, L.-A., & Trujillo, C. A. (2011). Towards understanding sodium effect on USY zeolite. Applied Catalysis A: General, 393(1-2), 171-177. doi:10.1016/j.apcata.2010.11.038 es_ES
dc.description.references Tangstad, E., Bendiksen, M., & Myrstad, T. (1997). Effect of sodium deposition of FCC catalysts deactivation. Applied Catalysis A: General, 150(1), 85-99. doi:10.1016/s0926-860x(96)00284-0 es_ES
dc.description.references Corma, A., Fornes, V., Monton, J. B., & Orchilles, A. V. (1986). Structural and cracking properties of REHY zeolites. Activity, selectivity, and catalyst-decay optimization for n-heptane cracking. Industrial & Engineering Chemistry Product Research and Development, 25(2), 231-238. doi:10.1021/i300022a018 es_ES
dc.description.references Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x es_ES
dc.description.references Otterstedt, J.-E., Zhu, Y.-M., & Sterte, J. (1988). Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices. Applied Catalysis, 38(1), 143-155. doi:10.1016/s0166-9834(00)80993-8 es_ES
dc.description.references Al-Khattaf, S. (2003). The Influence of Alumina on the Performance of FCC Catalysts during Hydrotreated VGO Catalytic Cracking. Energy & Fuels, 17(1), 62-68. doi:10.1021/ef020066a es_ES
dc.description.references Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem