- -

Non-structural carbohydrates in woody plants compared among laboratories

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-structural carbohydrates in woody plants compared among laboratories

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quentin, Audrey G. es_ES
dc.contributor.author Pinkard, Elizabeth A. es_ES
dc.contributor.author Ryan, Michael G. es_ES
dc.contributor.author Tissue, David T. es_ES
dc.contributor.author Baggett, L. Scott es_ES
dc.contributor.author Adams, Henry D. es_ES
dc.contributor.author Maillard, Pascale es_ES
dc.contributor.author Marchand, Jacqueline es_ES
dc.contributor.author Landhaeusser, Simon M. es_ES
dc.contributor.author Lacointe, Andre es_ES
dc.contributor.author Gibon, Yves es_ES
dc.contributor.author Anderegg, William R. L es_ES
dc.contributor.author Asao, Shinichi es_ES
dc.contributor.author Atkin, Owen K. es_ES
dc.contributor.author Bonhomme, Marc es_ES
dc.contributor.author Claye, Caroline es_ES
dc.contributor.author González Nebauer, Sergio es_ES
dc.date.accessioned 2016-11-09T12:43:52Z
dc.date.available 2016-11-09T12:43:52Z
dc.date.issued 2015-11
dc.identifier.issn 0829-318X
dc.identifier.uri http://hdl.handle.net/10251/73676
dc.description.abstract [EN] Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g-1 for starch and 53-649 (mean = 153) mg g-1 for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R-2 = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g-1 for total NSC, compared with the range of laboratory estimates of 596 mg g-1. Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods. es_ES
dc.description.sponsorship M.G.R. was funded by McMaster fellowship (1158.C). S.P. was funded by Juan de la Cierva contract (MCI project) and project ARBALMONT/786-2012 (OPAN, MAAMA, Spain). F.P. was funded by Fondecyt 11121175. U.N. and M.T. were funded by the Estonian Ministry of Education and Science, grant IUT-8-3. N.G.M. and L.T.D. were funded by DOE-BER. H.D.A. was funded by LANL-LDRD. J.M.-V. was funded by the Spanish Government (CGL 2010-16376). S.H. was funded by the Montana Institute on Ecosystems' Graduate Enhancement Award from NSF EPSCoR Track-1 NSF-IIA-1443108. Valuable comments from Dr Mauricio Mencuccini (University of Edinburgh), Dan Binkley (Colorado State University) and two anonymous reviewers were also greatly appreciated. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Tree Physiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Extraction and quantification consistency es_ES
dc.subject Non-structural carbohydrate chemical analysis es_ES
dc.subject Particle size es_ES
dc.subject Reference method es_ES
dc.subject Soluble sugars es_ES
dc.subject Standardization es_ES
dc.subject Starch es_ES
dc.subject.classification FISIOLOGIA VEGETAL es_ES
dc.title Non-structural carbohydrates in woody plants compared among laboratories es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/treephys/tpv073
dc.relation.projectID info:eu-repo/grantAgreement/NSF/Office of the Director/1443108/US/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MAAMA//ARBALMONT%2F786-2012/ES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Montana IoE//NSF-IIA-1443108/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11121175/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/HM//IUT-8-3/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-16376/ES/CAMBIOS HIDROLOGICOS ABRUPTOS EN LA PENINSULA IBERICA DURANTE LAS OSCILACIONES CLIMATICAS DE LOS PERIODOS INTERGLACIARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Quentin, AG.; Pinkard, EA.; Ryan, MG.; Tissue, DT.; Baggett, LS.; Adams, HD.; Maillard, P.... (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology. 35(11):1146-1165. https://doi.org/10.1093/treephys/tpv073 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1093/treephys/tpv073 es_ES
dc.description.upvformatpinicio 1146 es_ES
dc.description.upvformatpfin 1165 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 300511 es_ES
dc.contributor.funder Montana Institute on Ecosystems es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Estonian Ministry of Science and Education es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Ministerio de Agricultura, Alimentación y Medio Ambiente
dc.contributor.funder Laboratory Directed Research and Development
dc.description.references Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A., Guardiola-Claramonte, M., Zou, C. B., & Huxman, T. E. (2013). Nonstructural leaf carbohydrate dynamics ofPinus edulisduring drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197(4), 1142-1151. doi:10.1111/nph.12102 es_ES
dc.description.references AINSWORTH, E. A., & ROGERS, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2 ]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270. doi:10.1111/j.1365-3040.2007.01641.x es_ES
dc.description.references Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., … Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8), 695-709. doi:10.1046/j.1365-2486.2002.00498.x es_ES
dc.description.references Anderegg, W. R. L., & Anderegg, L. D. L. (2013). Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiology, 33(3), 252-260. doi:10.1093/treephys/tpt016 es_ES
dc.description.references ARNDT, S. K., LIVESLEY, S. J., MERCHANT, A., BLEBY, T. M., & GRIERSON, P. F. (2008). Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress. Plant, Cell & Environment, 31(7), 915-924. doi:10.1111/j.1365-3040.2008.01803.x es_ES
dc.description.references Snapka, R. M., Permana, P. A., Marquit, G., & Shin, C.-G. (1991). Two-dimensional agarose gel analysis of simian virus 40 DNA replication intermediates. Methods, 3(2), 73-82. doi:10.1016/s1046-2023(05)80198-7 es_ES
dc.description.references Barry, K. M., Quentin, A., Eyles, A., & Pinkard, E. A. (2011). Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladiere. Tree Physiology, 32(1), 24-35. doi:10.1093/treephys/tpr128 es_ES
dc.description.references Bonhomme, M., Rageau, R., Lacointe, A., & Gendraud, M. (2005). Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Scientia Horticulturae, 105(2), 223-240. doi:10.1016/j.scienta.2005.01.015 es_ES
dc.description.references Bryant, J. P., Chapin, F. S., & Klein, D. R. (1983). Carbon/Nutrient Balance of Boreal Plants in Relation to Vertebrate Herbivory. Oikos, 40(3), 357. doi:10.2307/3544308 es_ES
dc.description.references Campo, L., Monteagudo, A. B., Salleres, B., Castro, P., & Moreno-Gonzalez, J. (2013). NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability. Spanish Journal of Agricultural Research, 11(2), 463. doi:10.5424/sjar/2013112-3316 es_ES
dc.description.references Chapin, F. S., Schulze, E., & Mooney, H. A. (1990). The Ecology and Economics of Storage in Plants. Annual Review of Ecology and Systematics, 21(1), 423-447. doi:10.1146/annurev.es.21.110190.002231 es_ES
dc.description.references Cheng, J., Fan, P., Liang, Z., Wang, Y., Niu, N., Li, W., & Li, S. (2009). Accumulation of End Products in Source Leaves Affects Photosynthetic Rate in Peach via Alteration of Stomatal Conductance and Photosynthetic Efficiency. Journal of the American Society for Horticultural Science, 134(6), 667-676. doi:10.21273/jashs.134.6.667 es_ES
dc.description.references Chow, P. S., & Landhausser, S. M. (2004). A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology, 24(10), 1129-1136. doi:10.1093/treephys/24.10.1129 es_ES
dc.description.references Dichio, B., Xiloyannis, C., Sofo, A., & Montanaro, G. (2006). Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant and Soil, 290(1-2), 127-137. doi:10.1007/s11104-006-9144-x es_ES
dc.description.references DICKMAN, L. T., MCDOWELL, N. G., SEVANTO, S., PANGLE, R. E., & POCKMAN, W. T. (2014). Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant, Cell & Environment, 38(4), 729-739. doi:10.1111/pce.12441 es_ES
dc.description.references Dickson, R. E., & Larson, P. R. (1975). Incorporation of 14C-Photosynthate into Major Chemical Fractions of Source and Sink Leaves of Cottonwood. Plant Physiology, 56(2), 185-193. doi:10.1104/pp.56.2.185 es_ES
dc.description.references Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. (2014). Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology, 65(1), 667-687. doi:10.1146/annurev-arplant-050213-040054 es_ES
dc.description.references Drake, P. L., Mendham, D. S., & Ogden, G. N. (2013). Plant carbon pools and fluxes in coppice regrowth of Eucalyptus globulus. Forest Ecology and Management, 306, 161-170. doi:10.1016/j.foreco.2013.06.034 es_ES
dc.description.references Duan, H., Amthor, J. S., Duursma, R. A., O’Grady, A. P., Choat, B., & Tissue, D. T. (2013). Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiology, 33(8), 779-792. doi:10.1093/treephys/tpt061 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references El Zein, R., Maillard, P., Breda, N., Marchand, J., Montpied, P., & Gerant, D. (2011). Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiology, 31(8), 843-854. doi:10.1093/treephys/tpr074 es_ES
dc.description.references Emons, H., Linsinger, T. P. ., & Gawlik, B. . (2004). Reference materials: terminology and use. Can’t one see the forest for the trees? TrAC Trends in Analytical Chemistry, 23(6), 442-449. doi:10.1016/s0165-9936(04)00604-1 es_ES
dc.description.references Escobar-Gutiérrez A Moing A Gaudillère J-P (1997) Time course of carbohydrates concentration in mature leaves of peach seedlings [Prunus persica (L.) Batsch] during the night . ISHS Acta Horticulturae 465: IV International Peach Symposium, pp 337–344. es_ES
dc.description.references Eyles, A., Pinkard, E. A., & Mohammed, C. (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29(6), 753-764. doi:10.1093/treephys/tpp014 es_ES
dc.description.references EYLES, A., PINKARD, E. A., O’GRADY, A. P., WORLEDGE, D., & WARREN, C. R. (2009). Role of corticular photosynthesis following defoliation inEucalyptus globulus. Plant, Cell & Environment, 32(8), 1004-1014. doi:10.1111/j.1365-3040.2009.01984.x es_ES
dc.description.references Eyles, A., Pinkard, E. A., Davies, N. W., Corkrey, R., Churchill, K., O’Grady, A. P., … Mohammed, C. (2013). Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings. Journal of Experimental Botany, 64(6), 1625-1636. doi:10.1093/jxb/ert017 es_ES
dc.description.references Fajardo, A., & Piper, F. I. (2014). An experimental approach to explain the southern Andes elevational treeline. American Journal of Botany, 101(5), 788-795. doi:10.3732/ajb.1400166 es_ES
dc.description.references Fajardo, A., Piper, F. I., & Cavieres, L. A. (2010). Distinguishing local from global climate influences in the variation of carbon status with altitude in a tree line species. Global Ecology and Biogeography, 20(2), 307-318. doi:10.1111/j.1466-8238.2010.00598.x es_ES
dc.description.references Fajardo, A., Piper, F. I., Pfund, L., Körner, C., & Hoch, G. (2012). Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist, 195(4), 794-802. doi:10.1111/j.1469-8137.2012.04214.x es_ES
dc.description.references Fajardo, A., Piper, F. I., & Hoch, G. (2013). Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 112(3), 623-631. doi:10.1093/aob/mct127 es_ES
dc.description.references Galiano, L., Martínez-Vilalta, J., & Lloret, F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytologist, 190(3), 750-759. doi:10.1111/j.1469-8137.2010.03628.x es_ES
dc.description.references Gauthier, P. P. G., Crous, K. Y., Ayub, G., Duan, H., Weerasinghe, L. K., Ellsworth, D. S., … Atkin, O. K. (2014). Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 65(22), 6471-6485. doi:10.1093/jxb/eru367 es_ES
dc.description.references Giannoccaro, E., Wang, Y.-J., & Chen, P. (2008). Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars. Food Chemistry, 106(1), 324-330. doi:10.1016/j.foodchem.2007.04.065 es_ES
dc.description.references Gomez, L., Rubio, E., & Augé, M. (2002). A new procedure for extraction and measurement of soluble sugars in ligneous plants. Journal of the Science of Food and Agriculture, 82(4), 360-369. doi:10.1002/jsfa.1046 es_ES
dc.description.references Gordon, D., Rosati, A., Damiano, C., & Dejong, T. M. (2006). Seasonal effects of light exposure, temperature, trunk growth and plant carbohydrate status on the initiation and growth of epicormic shoots in Prunus persica. The Journal of Horticultural Science and Biotechnology, 81(3), 421-428. doi:10.1080/14620316.2006.11512083 es_ES
dc.description.references Graham, C. . (2002). Nonstructural carbohydrate and prunasin composition of peach seedlings fertilized with different nitrogen sources and aluminum. Scientia Horticulturae, 94(1-2), 21-32. doi:10.1016/s0304-4238(01)00345-4 es_ES
dc.description.references Grünzweig, J. M., Carmel, Y., Riov, J., Sever, N., McCreary, D. D., & Flather, C. H. (2008). Growth, resource storage, and adaptation to drought in California and eastern Mediterranean oak seedlings. Canadian Journal of Forest Research, 38(2), 331-342. doi:10.1139/x07-152 es_ES
dc.description.references Hall, M. B. (2013). Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology, 185(1-2), 94-100. doi:10.1016/j.anifeedsci.2013.06.008 es_ES
dc.description.references Handa, I. T., Körner, C., & Hättenschwiler, S. (2005). A TEST OF THE TREELINE CARBON LIMITATION HYPOTHESIS BY IN SITU CO2ENRICHMENT AND DEFOLIATION. Ecology, 86(5), 1288-1300. doi:10.1890/04-0711 es_ES
dc.description.references Hansen, J., & Møller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68(1), 87-94. doi:10.1016/0003-2697(75)90682-x es_ES
dc.description.references Hartmann, H., Ziegler, W., & Trumbore, S. (2013). Lethal drought leads to reduction in nonstructural carbohydrates in N orway spruce tree roots but not in the canopy. Functional Ecology, 27(2), 413-427. doi:10.1111/1365-2435.12046 es_ES
dc.description.references Haukioja, E., & Koricheva, J. (2000). Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 14(4-6). doi:10.1023/a:1011091606022 es_ES
dc.description.references Hoch, G., & Körner, C. (2003). The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 135(1), 10-21. doi:10.1007/s00442-002-1154-7 es_ES
dc.description.references HOCH, G., & KORNER, C. (2005). Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology, 19(6), 941-951. doi:10.1111/j.1365-2435.2005.01040.x es_ES
dc.description.references Hoch, G., Popp, M., & Korner, C. (2002). Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, 98(3), 361-374. doi:10.1034/j.1600-0706.2002.980301.x es_ES
dc.description.references HOCH, G., RICHTER, A., & KORNER, C. (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell and Environment, 26(7), 1067-1081. doi:10.1046/j.0016-8025.2003.01032.x es_ES
dc.description.references Huang, Y.-B., & Fu, Y. (2013). Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 15(5), 1095. doi:10.1039/c3gc40136g es_ES
dc.description.references Inglese, P., Caruso, T., Gugliuzza, G., & Pace, L. S. (2002). Crop Load and Rootstock Influence on Dry Matter Partitioning in Trees of Early and Late Ripening Peach Cultivars. Journal of the American Society for Horticultural Science, 127(5), 825-830. doi:10.21273/jashs.127.5.825 es_ES
dc.description.references Jaikumar, N. S., Snapp, S. S., Flore, J. A., & Loescher, W. (2014). Photosynthetic Responses in Annual Rye, Perennial Wheat, and Perennial Rye Subjected to Modest Source:Sink Ratio Changes. Crop Science, 54(1), 274. doi:10.2135/cropsci2013.04.0280 es_ES
dc.description.references Johansen, H. N., Glitsø, V., & Bach Knudsen, K. E. (1996). Influence of Extraction Solvent and Temperature on the Quantitative Determination of Oligosaccharides from Plant Materials by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 44(6), 1470-1474. doi:10.1021/jf950482b es_ES
dc.description.references Kagan, I. A., Kirch, B. H., Thatcher, C. D., Teutsch, C. D., & Pleasant, R. S. (2014). Chromatographic profiles of nonstructural carbohydrates contributing to the colorimetrically determined fructan, ethanol-soluble, and water-soluble carbohydrate contents of five grasses. Animal Feed Science and Technology, 188, 53-63. doi:10.1016/j.anifeedsci.2013.10.017 es_ES
dc.description.references Kim, S., Kim, W., & Hwang, I. K. (2003). Optimization of the extraction and purification of oligosaccharides from defatted soybean meal. International Journal of Food Science and Technology, 38(3), 337-342. doi:10.1046/j.1365-2621.2003.00679.x es_ES
dc.description.references King, J. R., Conway, W. C., Rosen, D. J., Oswald, B. P., & Williams, H. M. (2014). Total Nonstructural Carbohydrate Trends in Deeproot Sedge (Cyperus entrerianus). Weed Science, 62(1), 186-192. doi:10.1614/ws-d-11-00184.1 es_ES
dc.description.references Kobe, R. K. (1997). Carbohydrate Allocation to Storage as a Basis of Interspecific Variation in Sapling Survivorship and Growth. Oikos, 80(2), 226. doi:10.2307/3546590 es_ES
dc.description.references Korner, C. (2003). Carbon limitation in trees. Journal of Ecology, 91(1), 4-17. doi:10.1046/j.1365-2745.2003.00742.x es_ES
dc.description.references Kozlowski, T. T. (1992). Carbohydrate sources and sinks in woody plants. The Botanical Review, 58(2), 107-222. doi:10.1007/bf02858600 es_ES
dc.description.references Landh�usser, S. M., & Lieffers, V. J. (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees - Structure and Function, 17(6), 471-476. doi:10.1007/s00468-003-0263-1 es_ES
dc.description.references Leite, G. B., Bonhomme, M., Lacointe, A., Rageau, R., Sakr, S., Guilliot, A., … Couto-Rodriguez, A. (2004). INFLUENCE OF LACK OF CHILLING ON BUD-BREAK PATTERNS AND EVOLUTION OF SUGAR CONTENTS IN BUDS AND STEM TISSUES ALONG THE ONE-YEAR-OLD SHOOT OF THE PEACH TREES. Acta Horticulturae, (662), 61-71. doi:10.17660/actahortic.2004.662.5 es_ES
dc.description.references Li, M.-H., Xiao, W.-F., Wang, S.-G., Cheng, G.-W., Cherubini, P., Cai, X.-H., … Zhu, W.-Z. (2008). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 28(8), 1287-1296. doi:10.1093/treephys/28.8.1287 es_ES
dc.description.references Li, W. D., Duan, W., Fan, P. G., Yan, S. T., & Li, S. H. (2007). Photosynthesis in response to sink--source activity and in relation to end products and activities of metabolic enzymes in peach trees. Tree Physiology, 27(9), 1307-1318. doi:10.1093/treephys/27.9.1307 es_ES
dc.description.references LUSK, C. H., & PIPER, F. I. (2007). Seedling size influences relationships of shade tolerance with carbohydrate-storage patterns in a temperate rainforest. Functional Ecology, 21(1). doi:10.1111/j.1365-2435.2006.01205.x es_ES
dc.description.references Macrae, J. C., Smith, D., & McCready, R. M. (1974). Starch estimation in leaf tissue—A comparison of results using six methods. Journal of the Science of Food and Agriculture, 25(12), 1465-1469. doi:10.1002/jsfa.2740251206 es_ES
dc.description.references Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Analytical Chemistry, 75(13), 3019-3030. doi:10.1021/ac020361s es_ES
dc.description.references McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. doi:10.1111/j.1469-8137.2008.02436.x es_ES
dc.description.references Merchant, A., Peuke, A. D., Keitel, C., Macfarlane, C., Warren, C. R., & Adams, M. A. (2010). Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany, 61(6), 1785-1793. doi:10.1093/jxb/erq045 es_ES
dc.description.references Mitchell, P. J., O’Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2012). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197(3), 862-872. doi:10.1111/nph.12064 es_ES
dc.description.references Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D., & Pinkard, E. A. (2014). Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiology, 34(5), 443-458. doi:10.1093/treephys/tpu014 es_ES
dc.description.references Moing, A., Carbonne, F., Rashad, M. H., & Gaudillère, J.-P. (1992). Carbon Fluxes in Mature Peach Leaves. Plant Physiology, 100(4), 1878-1884. doi:10.1104/pp.100.4.1878 es_ES
dc.description.references Mooney, H. A. (1972). The Carbon Balance of Plants. Annual Review of Ecology and Systematics, 3(1), 315-346. doi:10.1146/annurev.es.03.110172.001531 es_ES
dc.description.references MORGAN, P. B., AINSWORTH, E. A., & LONG, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment, 26(8), 1317-1328. doi:10.1046/j.0016-8025.2003.01056.x es_ES
dc.description.references Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. doi:10.1093/jxb/erq438 es_ES
dc.description.references Nakagawa, S., & Schielzeth, H. (2012). A general and simple method for obtainingR2from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. doi:10.1111/j.2041-210x.2012.00261.x es_ES
dc.description.references NII, N. (1997). Changes of Starch and Sorbitol in Leaves Before and After Removal of Fruits from Peach Trees. Annals of Botany, 79(2), 139-144. doi:10.1006/anbo.1996.0324 es_ES
dc.description.references O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J., & Hector, A. (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4(8), 710-714. doi:10.1038/nclimate2281 es_ES
dc.description.references O’Grady, A. P., Eyles, A., Worledge, D., & Battaglia, M. (2010). Seasonal patterns of foliage respiration in dominant and suppressed Eucalyptus globulus canopies. Tree Physiology, 30(8), 957-968. doi:10.1093/treephys/tpq057 es_ES
dc.description.references Palacio, S., Hoch, G., Sala, A., Körner, C., & Millard, P. (2013). Does carbon storage limit tree growth? New Phytologist, 201(4), 1096-1100. doi:10.1111/nph.12602 es_ES
dc.description.references PINKARD, E. A., EYLES, A., & O’GRADY, A. P. (2011). Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships? Plant, Cell & Environment, 34(10), 1652-1665. doi:10.1111/j.1365-3040.2011.02361.x es_ES
dc.description.references Piper, F. I. (2011). Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 68(2), 415-424. doi:10.1007/s13595-011-0030-1 es_ES
dc.description.references Piper, F. I., & Fajardo, A. (2011). No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions. Annals of Botany, 108(5), 907-917. doi:10.1093/aob/mcr195 es_ES
dc.description.references Piper, F. I., & Fajardo, A. (2014). Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. Journal of Ecology, 102(5), 1101-1111. doi:10.1111/1365-2745.12284 es_ES
dc.description.references Quentin, A. G., Pinkard, E. A., Beadle, C. L., Wardlaw, T. J., O’Grady, A. P., Paterson, S., & Mohammed, C. L. (2010). Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings? Annals of Forest Science, 67(2), 203-203. doi:10.1051/forest/2009096 es_ES
dc.description.references Quentin, A. G., Beadle, C. L., O’Grady, A. P., & Pinkard, E. A. (2011). Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladière: Growth, biomass allocation and carbohydrates. Forest Ecology and Management, 261(3), 695-702. doi:10.1016/j.foreco.2010.11.028 es_ES
dc.description.references Quevauviller, P., Astruc, M., Ebdon, L., Desauziers, V., Sarradin, P. M., Astruc, A., … Griepink, B. (1994). Certified reference material (CRM 462) for the quality control of dibutyl- and tributyl-tin determinations in coastal sediment. Applied Organometallic Chemistry, 8(7-8), 629-637. doi:10.1002/aoc.590080713 es_ES
dc.description.references Raessler, M., Wissuwa, B., Breul, A., Unger, W., & Grimm, T. (2010). Chromatographic analysis of major non-structural carbohydrates in several wood species – an analytical approach for higher accuracy of data. Analytical Methods, 2(5), 532. doi:10.1039/b9ay00193j es_ES
dc.description.references Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., … Xu, X. (2012). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197(3), 850-861. doi:10.1111/nph.12042 es_ES
dc.description.references Rose, R., Rose, C. L., Omi, S. K., Forry, K. R., Durall, D. M., & Bigg, W. L. (1991). Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry, 39(1), 2-11. doi:10.1021/jf00001a001 es_ES
dc.description.references Ruuhola, T., Keinanen, M., Keski-Saari, S., & Lehto, T. (2011). Boron nutrition affects the carbon metabolism of silver birch seedlings. Tree Physiology, 31(11), 1251-1261. doi:10.1093/treephys/tpr109 es_ES
dc.description.references Ryan, M. G. (2011). Tree responses to drought. Tree Physiology, 31(3), 237-239. doi:10.1093/treephys/tpr022 es_ES
dc.description.references RYAN, M. G., PHILLIPS, N., & BOND, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29(3), 367-381. doi:10.1111/j.1365-3040.2005.01478.x es_ES
dc.description.references Sala, A., Piper, F., & Hoch, G. (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186(2), 274-281. doi:10.1111/j.1469-8137.2009.03167.x es_ES
dc.description.references Sala, A., Fouts, W., & Hoch, G. (2011). Carbon Storage in Trees: Does Relative Carbon Supply Decrease with Tree Size? Size- and Age-Related Changes in Tree Structure and Function, 287-306. doi:10.1007/978-94-007-1242-3_11 es_ES
dc.description.references Sala, A., Woodruff, D. R., & Meinzer, F. C. (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32(6), 764-775. doi:10.1093/treephys/tpr143 es_ES
dc.description.references Silva, C. M. S. da, Habermann, G., Marchi, M. R. R., & Zocolo, G. J. (2012). The role of matrix effects on the quantification of abscisic acid and its metabolites in the leaves of Bauhinia variegata L. using liquid chromatography combined with tandem mass spectrometry. Brazilian Journal of Plant Physiology, 24(3), 223-232. doi:10.1590/s1677-04202012000300009 es_ES
dc.description.references Karduck, P., Sloof, W. G., & Saunders, S. (2004). Certified Reference Materials for Micro-Analysis of Carbon and Nitrogen. Microchimica Acta, 145(1-4), 209-213. doi:10.1007/s00604-003-0155-5 es_ES
dc.description.references SEVANTO, S., MCDOWELL, N. G., DICKMAN, L. T., PANGLE, R., & POCKMAN, W. T. (2013). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37(1), 153-161. doi:10.1111/pce.12141 es_ES
dc.description.references Shvaleva, A. L., Silva, F. C. E., Breia, E., Jouve, J., Hausman, J. F., Almeida, M. H., … Chaves, M. M. (2006). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 26(2), 239-248. doi:10.1093/treephys/26.2.239 es_ES
dc.description.references Smeraglia, J., Baldrey, S. F., & Watson, D. (2002). Matrix effects and selectivity issues in LC-MS-MS. Chromatographia, 55(S1), S95-S99. doi:10.1007/bf02493363 es_ES
dc.description.references Strauss, S. Y., & Agrawal, A. A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14(5), 179-185. doi:10.1016/s0169-5347(98)01576-6 es_ES
dc.description.references Thompson, M., & Ellison, S. L. R. (2004). A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accreditation and Quality Assurance, 10(3), 82-97. doi:10.1007/s00769-004-0871-5 es_ES
dc.description.references Tworkoski, T. J., Glenn, D. M., & Welker, W. V. (1997). Carbohydrate and Nitrogen Partitioning within One-year Shoots of Young Peach Trees Grown with Grass Competition. HortScience, 32(7), 1174-1177. doi:10.21273/hortsci.32.7.1174 es_ES
dc.description.references Weibel A Reighard G Rajapakse N DeJong T (2008) Dormant carbohydrate reserves of two peach cultivars grafted on different vigor rootstocks . ISHS Acta Horticulturae 903: IX International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems, pp 815–820. es_ES
dc.description.references Wiley, E., & Helliker, B. (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195(2), 285-289. doi:10.1111/j.1469-8137.2012.04180.x es_ES
dc.description.references WITTIG, V. E., AINSWORTH, E. A., NAIDU, S. L., KARNOSKY, D. F., & LONG, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15(2), 396-424. doi:10.1111/j.1365-2486.2008.01774.x es_ES
dc.description.references Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. doi:10.1042/bj0570508 es_ES
dc.description.references Zhang, C., Shen, Z., Zhang, Y., Han, J., Ma, R., Korir, N. K., & Yu, M. (2012). Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Acta Physiologiae Plantarum, 35(2), 589-602. doi:10.1007/s11738-012-1100-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem