- -

Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

Mostrar el registro completo del ítem

Gómez Lozano, V.; Ramirez Hoyos, P.; Cervera Montesinos, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafé, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports. 5(9501):1-5. https://doi.org/10.1038/srep09501

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/78376

Ficheros en el ítem

Metadatos del ítem

Título: Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore
Autor: Gómez Lozano, Vicente Ramirez Hoyos, Patricio Cervera Montesinos, Javier Nasir, Saima Ali, Mubarak Ensinger, Wolfgang Mafé, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged ...[+]
Palabras clave: Ion channels , Transduction , Devices
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep09501
Editorial:
Nature Publishing Group: Open Access Journals - Option C
Versión del editor: http://dx.doi.org/10.1038/srep09501
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/
info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/
Agradecimientos:
We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2012-32084) and the Generalitat Valenciana (project Prometeo/GV/0069).
Tipo: Artículo

References

Astumian, R. D. Stochastic conformational pumping: A mechanism for free-energy transduction by molecules. Annu. Rev. Biophys. 40, 289–313 (2011).

Qian, H. Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback and other mechanisms for sigmoidal responses. Annu. Rev. Biophys. 41, 179–204 (2012).

Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, MA, 1992). [+]
Astumian, R. D. Stochastic conformational pumping: A mechanism for free-energy transduction by molecules. Annu. Rev. Biophys. 40, 289–313 (2011).

Qian, H. Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback and other mechanisms for sigmoidal responses. Annu. Rev. Biophys. 41, 179–204 (2012).

Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, MA, 1992).

Levin, M. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays 34, 205–217 (2012).

Queralt-Martín, M. et al. Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Appl. Phys. Lett. 103, 043707 (2013).

Hudspeth, A. J., Choe, Y., Mehta, A. D. & Martin, P. Putting ion channels to work: Mechanoelectrical transduction, adaptation and amplification by hair cells. Proc. Nat. Acad. Sci. U.S.A. 97, 11765–11772 (2000).

Siwy, Z. & Fuliński, A. Fabrication of a Synthetic Nanopore Ion Pump. Phys. Rev. Lett. 89, 198103 (2002).

Siwy, Z. & Fuliński, A. A nanodevice for rectification and pumping ions. Am. J. Phys. 72, 567–574 (2004).

Ramirez, P., Gomez, V., Ali, M., Ensinger, W. & Mafe, S. Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochem. Commun. 31, 137–140 (2013).

Ali, M. et al. Current rectification by nanoparticle blocking in single cylindrical nanopores. Appl. Phys. Lett. 104, 043703 (2014).

Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 106, 13780–13784 (2009).

Ramirez, P., Ali, M., Ensinger, W. & Mafe, S. Information processing with a single multifunctional nanofluidic diode. Appl. Phys. Lett. 101, 133108 (2012).

Hou, Y., Vidu, R. & Stroeve, P. Solar energy storage methods. Ind. Eng. Chem. Res. 50, 8954–8964 (2011).

Guo, W. et al. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010).

Cervera, J., Ramirez, P., Mafe, S. & Stroeve, P. Asymmetric nanopore rectification for ion pumping, electrical power generation and information processing applications. Electrochim. Acta, 56, 4504–4511 (2011).

Tybrandt, K., Forchheimer, R. & Berggren, M. Logic gates based on ion transistors. Nat. Commun., 3, 871 (2012)

Apel, P. Track etching technique in membrane technology. Radiat. Meas. 34, 559–566 (2001).

Ali, M., Ramirez, P., Mafe, S., Neumann, R. & Ensinger, W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3, 603–608 (2009).

Albrecht, T. How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano 5, 6714–6725 (2011).

Ali, M. et al. Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. J. Phys. Chem. C 117, 18234–18242 (2013).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem