- -

Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Lozano, Vicente es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Cervera Montesinos, Javier es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafé, Salvador es_ES
dc.date.accessioned 2017-02-28T15:57:21Z
dc.date.available 2017-02-28T15:57:21Z
dc.date.issued 2015-04-01
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/78376
dc.description.abstract We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes. es_ES
dc.description.sponsorship We acknowledge the support from the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2012-32084) and the Generalitat Valenciana (project Prometeo/GV/0069). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group: Open Access Journals - Option C es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ion channels es_ES
dc.subject Transduction es_ES
dc.subject Devices es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep09501
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F069/ES/COOPERATIVIDAD Y VARIABILIDAD EN NANOESTRUCTURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gómez Lozano, V.; Ramirez Hoyos, P.; Cervera Montesinos, J.; Nasir, S.; Ali, M.; Ensinger, W.; Mafé, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports. 5(9501):1-5. https://doi.org/10.1038/srep09501 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/srep09501 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 9501 es_ES
dc.relation.senia 291639 es_ES
dc.identifier.pmid 25830563 en_EN
dc.identifier.pmcid PMC4381619 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Astumian, R. D. Stochastic conformational pumping: A mechanism for free-energy transduction by molecules. Annu. Rev. Biophys. 40, 289–313 (2011). es_ES
dc.description.references Qian, H. Cooperativity in cellular biochemical processes: Noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback and other mechanisms for sigmoidal responses. Annu. Rev. Biophys. 41, 179–204 (2012). es_ES
dc.description.references Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, MA, 1992). es_ES
dc.description.references Levin, M. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. Bioessays 34, 205–217 (2012). es_ES
dc.description.references Queralt-Martín, M. et al. Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Appl. Phys. Lett. 103, 043707 (2013). es_ES
dc.description.references Hudspeth, A. J., Choe, Y., Mehta, A. D. & Martin, P. Putting ion channels to work: Mechanoelectrical transduction, adaptation and amplification by hair cells. Proc. Nat. Acad. Sci. U.S.A. 97, 11765–11772 (2000). es_ES
dc.description.references Siwy, Z. & Fuliński, A. Fabrication of a Synthetic Nanopore Ion Pump. Phys. Rev. Lett. 89, 198103 (2002). es_ES
dc.description.references Siwy, Z. & Fuliński, A. A nanodevice for rectification and pumping ions. Am. J. Phys. 72, 567–574 (2004). es_ES
dc.description.references Ramirez, P., Gomez, V., Ali, M., Ensinger, W. & Mafe, S. Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochem. Commun. 31, 137–140 (2013). es_ES
dc.description.references Ali, M. et al. Current rectification by nanoparticle blocking in single cylindrical nanopores. Appl. Phys. Lett. 104, 043703 (2014). es_ES
dc.description.references Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 106, 13780–13784 (2009). es_ES
dc.description.references Ramirez, P., Ali, M., Ensinger, W. & Mafe, S. Information processing with a single multifunctional nanofluidic diode. Appl. Phys. Lett. 101, 133108 (2012). es_ES
dc.description.references Hou, Y., Vidu, R. & Stroeve, P. Solar energy storage methods. Ind. Eng. Chem. Res. 50, 8954–8964 (2011). es_ES
dc.description.references Guo, W. et al. Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010). es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S. & Stroeve, P. Asymmetric nanopore rectification for ion pumping, electrical power generation and information processing applications. Electrochim. Acta, 56, 4504–4511 (2011). es_ES
dc.description.references Tybrandt, K., Forchheimer, R. & Berggren, M. Logic gates based on ion transistors. Nat. Commun., 3, 871 (2012) es_ES
dc.description.references Apel, P. Track etching technique in membrane technology. Radiat. Meas. 34, 559–566 (2001). es_ES
dc.description.references Ali, M., Ramirez, P., Mafe, S., Neumann, R. & Ensinger, W. A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3, 603–608 (2009). es_ES
dc.description.references Albrecht, T. How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano 5, 6714–6725 (2011). es_ES
dc.description.references Ali, M. et al. Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. J. Phys. Chem. C 117, 18234–18242 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem