- -

Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sardanyes Cayuela, Jose es_ES
dc.contributor.author Simó, Carles es_ES
dc.contributor.author Martínez, Regina es_ES
dc.contributor.author Solé, Ricard V. es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2017-05-18T11:43:01Z
dc.date.available 2017-05-18T11:43:01Z
dc.date.issued 2014-04-09
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/81389
dc.description.abstract [EN] The distribution of mutational fitness effects (DMFE) is crucial to the evolutionary fate of quasispecies. In this article we analyze the effect of the DMFE on the dynamics of a large quasispecies by means of a phenotypic version of the classic Eigen's model that incorporates beneficial, neutral, deleterious, and lethal mutations. By parameterizing the model with available experimental data on the DMFE of Vesicular stomatitis virus (VSV) and Tobacco etch virus (TEV), we found that increasing mutation does not totally push the entire viral quasispecies towards deleterious or lethal regions of the phenotypic sequence space. The probability of finding regions in the parameter space of the general model that results in a quasispecies only composed by lethal phenotypes is extremely small at equilibrium and in transient times. The implications of our findings can be extended to other scenarios, such as lethal mutagenesis or genomically unstable cancer, where increased mutagenesis has been suggested as a potential therapy. es_ES
dc.description.sponsorship We thank the members of the Complex Systems Lab as well as Phillip Gerrish, Susanna C. Manrubia, and Ernest Fontich for their helpful comments. The authors acknowledge the computing facilities of the Dynamical Systems Group (Universitat de Barcelona). This work was partially funded by the Botin Foundation (JS, RVS), by the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion grants MTM2010-16425 (CS, RM) and BFU2012-30805 (SFE), by grant 2009-SGR-67 from the Catalan government (CS, RM), by grant NSF PHY05-51164 (JS, SFE), and by the Santa Fe Institute (RVS, SFE). en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Single-nucleotide substitutions es_ES
dc.subject Immunodeficiency-virus type-1 es_ES
dc.subject Vesicular stomatitis-virus es_ES
dc.subject Tobacco-ETCH-virus es_ES
dc.subject Error threshold es_ES
dc.subject RNA virus es_ES
dc.subject Deleterious mutations es_ES
dc.subject Muller ratchet es_ES
dc.subject Human cancers es_ES
dc.subject Evolution es_ES
dc.title Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep04625 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sardanyes Cayuela, J.; Simó, C.; Martínez, R.; Solé, RV.; Elena Fito, SF. (2014). Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Scientific Reports. (4):1-9. doi:10.1038/srep04625 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep04625 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 4 es_ES
dc.relation.senia 266232 es_ES
dc.identifier.pmid 24713667 en_EN
dc.identifier.pmcid PMC3980229
dc.contributor.funder Fundación Botín es_ES
dc.description.references Eigen, M. Self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465–523 (1971). es_ES
dc.description.references Eigen, M. & Schuster, P. The hypercycle. A principle of natural self-organization [Eigen, M. & Schuster, P. (eds.)] (Springer-Verlag, Berlin, 1979). es_ES
dc.description.references Schuster, P. Evolution on “realistic” fitness landscapes. Phase transitions, strong quasispecies and neutrality. Santa Fe Institute Working Paper #12-06-006, 1–94 (2012). es_ES
dc.description.references Domingo, E., Webster, E. & Holland, J. J. Origin and evolution of viruses [Domingo, E., Parrish, C. R. & Holland, J. J. (eds.)] (Academic, San Diego, USA, 1999). es_ES
dc.description.references Wilke, C. O. Quasispecies theory in the context of population genetics. BMC Evol. Biol. 5, 44–51 (2005). es_ES
dc.description.references Eigen, M., McCaskill, J. & Schuster, P. The Molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989). es_ES
dc.description.references Domingo, E., Biebricher, C., Eigen, M. & Holland, J. J. Quasispecies and RNA virus evolution: Principles and consequences (Landes Bioscience, Austin, TX, 2001). es_ES
dc.description.references Manrubia, S. C., Domingo, E. & Lázaro, E. Pathways to extinction: beyond the error threshold. Phil. Trans. R. Soc. B 365, 1943–1952 (2010). es_ES
dc.description.references Franz, S. & Peliti, L. Error threshold in simple landscapes. J. Phys. A: Math. Gen. 30, 4481–4487 (1997). es_ES
dc.description.references Satorras, R. P. & Solé, R. V. Field theory for a reaction-diffusion model of quasispecies dynamics. Phys. Rev. E 64, 051909278 (2001). es_ES
dc.description.references Saakian, D. B. & Chin-Kun, H. Exact solution of the Eigen model with general fitness functions and degradation rates. Proc. Natl. Acad. Sci. U.S.A. 103, 4935–4939 (2005). es_ES
dc.description.references Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931). es_ES
dc.description.references Kauffman, S. & Levin, S. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987). es_ES
dc.description.references Sanjuán, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl. Acad. Sci. U.S.A. 101, 8396–8401 (2004). es_ES
dc.description.references Carrasco, P., de la Iglesia, F. & Elena, S. F. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J. Virol. 81, 12979–12984 (2007). es_ES
dc.description.references Saakian, D. B., Muñoz, E., Chin-Kun, H. & Deem, M. W. Quasispecies theory for multiple-peak fitness landscapes. Phys. Rev. E 73, 041913 (2006). es_ES
dc.description.references Sardanyés, J., Solé, R. V. & Elena, S. F. Simple quasispecies models for the survival-of-the-flattest effect: the role of space. J. theor. Biol. 250, 560–568 (2006). es_ES
dc.description.references Wilke, C. O. Selection for fitness versus selection for robustness in RNA secondary structure folding. Evolution 55, 2412–2420 (2001). es_ES
dc.description.references McCaskill, J. S. & Altemeyer, S. Error threshold for spatially resolved evolution in the quasispecies model. Phys. Rev. Lett. 86, 5819–5822 (2001). es_ES
dc.description.references Toyabe, S. & Sano, M. Spatial suppression of error catastrophe in a growing pattern. Physica D 230, 1–8 (2005). es_ES
dc.description.references Sardanyés, J. & Elena, S. F. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLOS ONE 6, e24884 (2011). es_ES
dc.description.references Sardanyés, J. & Elena, S. F. Error threshold in RNA quasispecies models with complementation. J. Theor. Biol. 265, 278–286 (2010). es_ES
dc.description.references Iranzo, J. & Manrubia, S. C. Evolutionary dynamics of genome segmentation in multipartite viruses. Proc. R. Soc. B 279, 3812–3819 (2012). es_ES
dc.description.references Sardanyés, J., Solé, R. V. & Elena, S. F. Replication mode and landscape topology differentially affect RNA virus mutational load and robustness. J. Virol. 83, 12579–12589 (2009). es_ES
dc.description.references Sanjuán, R. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Phil. Trans. R. Soc. B 365, 1975 (2010). es_ES
dc.description.references Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007). es_ES
dc.description.references Manrubia, S. C. Modelling viral evolution and adaptation: challenges and rewards. Curr. Op. Virol. 2, 531–537 (2012). es_ES
dc.description.references Keightley, P. D. & Lynch, M. Toward a realistic model of mutations affecting fitness. Evolution 57, 683–685 (2003). es_ES
dc.description.references Keightley, P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138, 1315–1322 (1994). es_ES
dc.description.references Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol. Lett. 2, 426–430 (2006). es_ES
dc.description.references Imhof, M. & Schlötterer, C. Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. U.S.A. 98, 1113–1117 (2001). es_ES
dc.description.references Elena, S. F. & Moya, A. Rate of deleterious mutation and the distribution of its effects on fitness in Vesicular stomatitis virus. J. Evol. Biol. 12, 1078–1088 (1999). es_ES
dc.description.references van Opiijnen, T., Boerlijst, M. C. & Berkhout, B. Effects of random mutations in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80, 6678–6685 (2006). es_ES
dc.description.references Orr, H. A. The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003). es_ES
dc.description.references Antoneli, F., Bosco, F., Castro, D. & Janini, L. M. Virus replication as a phenotypic version of polynucleotide evolution. Bull. Math. Biol. 75, 602–628 (2013). es_ES
dc.description.references Perales, C., Iranzo, J., Manrubia, S. & Domingo, E. The impact of quasispecies dynamics on the use of therapeutics. Trends in Microbiol. 20, 595–603 (2012). es_ES
dc.description.references Schuster, P. Mathematical modeling of evolution. Solved and open problems. Theory Biosci. 130, 71–89 (2011). es_ES
dc.description.references Lorenz, D. M., Park, J.-M. & Deem, M. W. Evolutionary processes in finite populations. Phys. Rev. E 87, 022704 (2013). es_ES
dc.description.references Bull, J. J., Meyers, L. A. & Lachmann, M. Quasispecies made simple. PLOS Comput. Biol. 1, e61 (2005). es_ES
dc.description.references Bull, J. J., Sanjuán, R. & Wilke, C. O. Theory of lethal mutagenesis for viruses. J. Virol. 81, 2930–2939 (2007). es_ES
dc.description.references Wylie, C. S. & Shakhnovic, E. L. Mutation induced extinction in finite populations: lethal mutagenesis and lethal isolation. PLOS Comput. Biol. 8, e1002609 (2012). es_ES
dc.description.references Aguirre, J., Buldú, J. M. & Manrubia, S. C. A trade-off between neutrality and adaptability limits the optimization of viral quasispecies. J. Theor. Biol. 261, 148–155 (2001). es_ES
dc.description.references Cuesta, J. A., Aguirre, J., Capitán, J. A. & Manrubia, S. C. Struggle for space: viral extinction through competition for cells. Phys. Rev. Lett. 106, 028104 (2011). es_ES
dc.description.references Holland, J. et al. Rapid evolution of RNA genomes. Science 215, 1577–1585 (1982). es_ES
dc.description.references Holland, J. J., Domingo, E., de la Torre, J. C. & Steinhauer, D. A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990). es_ES
dc.description.references Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl. Acad. Sci. U.S.A. 96, 1492–1497 (1999). es_ES
dc.description.references Anderson, J. P., Daifuku, R. & Loeb, L. A. Viral error catastrophe by mutagenic nucleosides. Annu. Rev. Microbiol. 58, 183–205 (2004). es_ES
dc.description.references Grande-Pérez, A. et al. Suppression of viral infectivity through lethal defection. Proc. Natl. Acad. Sci. U.S.A. 102, 4448–4452 (2005). es_ES
dc.description.references Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990). es_ES
dc.description.references de la Peña, M., Elena, S. F. & Moya, A. Effect of deleterious mutation-accumulation on the fitness of RNA bacteriophage MS2. Evolution 54, 686–691 (2000). es_ES
dc.description.references Duarte, E. et al. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc. Natl. Acad. Sci. U.S.A. 89, 6015–6019 (1992). es_ES
dc.description.references de la Iglesia, F. & Elena, S. F. Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J. Virol. 81, 4941–4947 (2007). es_ES
dc.description.references Escarmís, C., Lázaro, E. & Manrubia, S. C. Population bottlenecks in quasispecies dynamics. Curr. Top. Microbiol. Immunol. 299, 141–170 (2006). es_ES
dc.description.references Yuste, E. et al. (1999) Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck events. J. Virol. 73, 2745–2751 (1999). es_ES
dc.description.references Solé, R. V. & Deisboeck, T. S. An error catastrophe in cancer? J. Theor. Biol. 228, 47–54 (2004). es_ES
dc.description.references Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012). es_ES
dc.description.references Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998). es_ES
dc.description.references Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell. Biol. 9, M57–60 (1999). es_ES
dc.description.references Fox, M. In vitro mutagenesis by anti-cancer drugs. Chemotherapy 315–322 (1976). es_ES
dc.description.references Fox, E. J. & Loeb, L. A. Lethal mutagenesis: Targeting the mutator phenotype in cancer. Seminars in Cancer Biology 20, 353–359 (2010). es_ES
dc.description.references Loeb, L. A. Human cancers express the mutator phenotypes: origin, consequences and targeting. Nature 11, 450–457 (2011). es_ES
dc.description.references Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Medicine 10, 789–99 (2004). es_ES
dc.description.references Elena, S. F., Solé, R. V. & Sardanyés, J. Simple genomes, complex interactions: Epistasis in RNA virus. Chaos 20, 026106 (2010). es_ES
dc.description.references Reidys, C., Forst, C. V. & Schuster, P. Replication and mutation on neutral networks. Bull. Math. Biol. 63, 57–94 (2001). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem