- -

Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hasiow-Jaroszewska, B es_ES
dc.contributor.author Czerwoniec, A es_ES
dc.contributor.author Pospieszny, H es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2017-05-18T11:56:44Z
dc.date.available 2017-05-18T11:56:44Z
dc.date.issued 2011-06-24
dc.identifier.issn 1743-422X
dc.identifier.uri http://hdl.handle.net/10251/81394
dc.description.abstract [EN] Background: Pepino mosaic virus (PepMV) is considered one of the most dangerous pathogens infecting tomatoes worldwide. The virus is highly diverse and four distinct genotypes, as well as inter-strain recombinants, have already been described. The isolates display a wide range on symptoms on infected plant species, ranging from mild mosaic to severe necrosis. However, little is known about the mechanisms and pattern of PepMV molecular evolution and about the role of individual proteins in host-pathogen interactions. Methods: The nucleotide sequences of the triple gene block 3 (TGB3) from PepMV isolates varying in symptomatology and geographic origin have been analyzed. The modes and patterns of molecular evolution of the TGBp3 protein were investigated by evaluating the selective constraints to which particular amino acid residues have been subjected during the course of diversification. The tridimensional structure of TGBp3 protein has been modeled de novo using the Rosetta algorithm. The correlation between symptoms development and location of specific amino acids residues was analyzed. Results: The results have shown that TGBp3 has been evolving mainly under the action of purifying selection operating on several amino acid sites, thus highlighting its functional role during PepMV infection. Interestingly, amino acid 67, which has been previously shown to be a necrosis determinant, was found to be under positive selection. Conclusions: Identification of diverse selection events in TGB3p3 will help unraveling its biological functions and is essential to an understanding of the evolutionary constraints exerted on the Potexvirus genome. The estimated tridimensional structure of TGBp3 will serve as a platform for further sequence, structural and function analysis and will stimulate new experimental advances. es_ES
dc.description.sponsorship This study was funded by the Polish Ministry of Science and Higher Education grants 0067/P01/2010/70 (AC) and N N310 163 438 and IP2010 012470 Iuventus Plus (to BHJ). The study was also supported by Foundation for Polish Science. Work in Valencia was supported by the Spanish MICINN grant BFU2009-06993 (to SFE) and by EMBO Short Term Fellowship ASTF424-2010 (to BHJ). en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof Virology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Molecular evolution es_ES
dc.subject PepMW es_ES
dc.subject Protein modeling es_ES
dc.subject Selective constraints es_ES
dc.subject TGBp3 es_ES
dc.subject Virus evolution es_ES
dc.title Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1743-422X-8-318
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/263318/EU/How the brain codes the past to predict the future/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Hasiow-Jaroszewska, B.; Czerwoniec, A.; Pospieszny, H.; Elena Fito, SF. (2011). Tridimensional model structure and patterns of molecular evolution of Pepino mosaic virus TGBp3 protein. Virology Journal. 8:1-8. https://doi.org/10.1186/1743-422X-8-318 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/1743-422X-8-318 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.relation.senia 218187 es_ES
dc.identifier.pmid 21702943 en_EN
dc.identifier.pmcid PMC3132167
dc.description.references Maroon-Lango CJ, Guaragna MA, Jordan RL, Hammond J, Bandla M, Marquardt SK: Two unique US isolates of Pepino mosaic virus from a limited source of pooled tomato tissue are distinct from a third (European -like) US isolate. Arch Virol 2005, 150: 1187-1201. 10.1007/s00705-005-0495-z es_ES
dc.description.references Ling KS: Molecular characterization of two Pepino mosaic virus variants from imported tomato seed reveals high levels of sequence identity between Chilean and US isolates. Virus Genes 2007, 34: 1-8. 10.1007/s11262-006-0003-x es_ES
dc.description.references Hasiów B, Borodynko N, Pospieszny H: Complete genomic RNA sequence of the Polish Pepino mosaic virus isolate belonging to the US2 strain. Virus Genes 2008, 36: 1-8. 10.1007/s11262-007-0165-1 es_ES
dc.description.references Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H: Pepino mosaic virus - a pathogen of tomato crops in Poland: biology, evolution and diagnostics. J Plant Protect Res 2010, 50: 477-483. 10.2478/v10045-010-0079-0 es_ES
dc.description.references Hanssen I, Thomma B: Pepino mosaic virus : a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol 2010, 11: 179-189. 10.1111/j.1364-3703.2009.00600.x es_ES
dc.description.references Hasiów-Jaroszewska B, Borodynko N, Jackowiak P, Figlerowicz M, Pospieszny H: A single mutation in TGB3 converts mild pathotype of Pepino mosaic virus into necrotic one. Virus Res 2011, 159: 57-61. 10.1016/j.virusres.2011.04.008 es_ES
dc.description.references Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000, 15: 496-503. 10.1016/S0169-5347(00)01994-7 es_ES
dc.description.references Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41: 95-98. es_ES
dc.description.references Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 2004, 32: 1792-1797. 10.1093/nar/gkh340 es_ES
dc.description.references Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignemnts into the corresponding codon alignments. Nucl Acids Res 2006, 34: 609-612. 10.1093/nar/gkl315 es_ES
dc.description.references Silva MC, Edwards SV: Structure and evolution of a new avian MHC CIass II B gene in a sub-antarctic seabird, the thin-billed prion (Procellariiformes: Pachyptila belcheri ). J Mol Evol 2009, 68: 279-291. 10.1007/s00239-009-9200-2 es_ES
dc.description.references Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26: 2462-2463. 10.1093/bioinformatics/btq467 es_ES
dc.description.references Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011. es_ES
dc.description.references Kosakovsky Pond SL, Frost SDW: Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22: 1208-1222. 10.1093/molbev/msi105 es_ES
dc.description.references Kosakovsky Pond S, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21: 676-679. 10.1093/bioinformatics/bti079 es_ES
dc.description.references Kosakovsky Pond SL, Frost SDW: DATAMONKEY: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 2005, 21: 2531-2533. 10.1093/bioinformatics/bti320 es_ES
dc.description.references Yang Z, Nielsen R, Goldman N, Pedersen AMK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155: 431-449. es_ES
dc.description.references Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 2000, 13: 555-556. es_ES
dc.description.references Fares MA: SWAPSC: sliding-window analysis procedure to detect selective constraints. Bioinformatics 2004, 20: 2867-2868. 10.1093/bioinformatics/bth303 es_ES
dc.description.references Ashkenazy H, Erez E, Martz E, Pupko T, Ben-T N: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucl Acids Res 2010, 38: 529-533. 10.1093/nar/gkq399 es_ES
dc.description.references Kurowski MA, Bujnicki JM: GeneSilico protein structure prediction meta-server. Nucl Acids Res 2003, 31: 3305-3307. 10.1093/nar/gkg557 es_ES
dc.description.references McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics 2000, 16: 404-405. 10.1093/bioinformatics/16.4.404 es_ES
dc.description.references Rost B, Yachdav G, Liu J: The PredictProtein server. Nucleic Acids Res 2004, 32: 321-326. 10.1093/nar/gkh377 es_ES
dc.description.references Ouali M, King RD: Cascaded multiple classifiers for secondary structure prediction. Protein Sci 2000, 9: 1162-1176. 10.1110/ps.9.6.1162 es_ES
dc.description.references Adamczak R, Porollo A, Meller J: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 2004, 56: 753-767. 10.1002/prot.20176 es_ES
dc.description.references Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000, 40: 502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q es_ES
dc.description.references Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structure from fragments with similar local sequences using simulated annealing and bayesian scoring function. J Mol Biol 1997, 268: 209-225. 10.1006/jmbi.1997.0959 es_ES
dc.description.references Siew N, Elofsson A, Rychlewski L, Fischer D: MaxSub: An automated measure to assess the quality of protein structure predictions. Bioinformatics 2000, 16: 776-785. 10.1093/bioinformatics/16.9.776 es_ES
dc.description.references Wallner B, Elofsson A: Can correct protein models be identified. Protein Sci 2003, 12: 1073-1086. 10.1110/ps.0236803 es_ES
dc.description.references Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM: MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics 2008, 9: 403. 10.1186/1471-2105-9-403 es_ES
dc.description.references Baker NA, Sept D, Holst MJ, McCammon JA: Electrostatics of cellular components: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001, 98: 10037-10041. 10.1073/pnas.181342398 es_ES
dc.description.references Tromas N, Elena SF: The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 2010, 185: 983-989. 10.1534/genetics.110.115915 es_ES
dc.description.references Kosinski J, Cymerman IA, Feder M, Kurowski MA, Sasin JM, Bujnicki JM: A 'Frankenstein's monster' approach to comparative modeling: merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 2003, 53: 369-79. 10.1002/prot.10545 es_ES
dc.description.references Morozov SY, Solovyev AG: Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 2003, 84: 1351-1366. 10.1099/vir.0.18922-0 es_ES
dc.description.references Beck DL, Guilford PJ, Voot DM, Andersen MT, Forster RLS: Triple gene block proteins of White clover mosaic potexvirus are required for transport. Virology 1991, 83: 695-702. es_ES
dc.description.references Senshu H, Ozeki J, Komatsu K, Hashimoto M, Hatada K, Aoyama M, Kagiwada S, Yamaji Y, Namba S: Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. J Gen Virol 2009, 90: 1014-24. 10.1099/vir.0.008243-0 es_ES
dc.description.references Morozov SY, Miroshnichenko NA, Solovyev AG, Zelenina DA, Fedorkin ON, Lukasheva LI, Grachev SA, Chernov BK: In vitro membrane binding of the translation products of the carlavirus 7-kDa protein genes. Virology 1991, 183: 782-785. 10.1016/0042-6822(91)91011-5 es_ES
dc.description.references Cowan GH, Lioliopoulou F, Ziegler A, Torrance L: Subcellular localisation, protein interactions, and RNA binding of potato mop-top virus triple gene block proteins. Virology 2002, 298: 106-115. 10.1006/viro.2002.1435 es_ES
dc.description.references Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, Zamyatnin AA Jr, Kalinina NO, Schiemann J, Solovyev AG, Morozov SYu: Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 2003, 84: 985-994. 10.1099/vir.0.18885-0 es_ES
dc.description.references Tourasse NJ, Li WH: Selective constraints, amino acid composition, and the rate of protein evolution. Mol Biol Evol 2000, 17: 656-664. es_ES
dc.description.references Farfan M, Minana-Galbis D, Carmenn Fuste M, Loren G: Divergent evolution and purifying selection of the flaA gene sequences in Aeromas . Biol Direct 2009, 4: 23-39. 10.1186/1745-6150-4-23 es_ES
dc.description.references Hasiów-Jaroszewska B, Jackowiak P, Borodynko N, Figlerowicz M, Pospieszny H: Quasispecies nature of Pepino mosaic virus and its evolutionary dynamics. Virus Genes 2010, 41: 260-267. 10.1007/s11262-010-0497-0 es_ES
dc.description.references Gómez P, Sempere RN, Elena SF, Aranda MA: Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 2009, 83: 12378-12387. 10.1128/JVI.01486-09 es_ES
dc.description.references DeLano WL: The PyMOL User's Manual. DeLano Scientific, San Carlos, CA, USA; 2002. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem