- -

Designing III V multijunction solar cells on silicon

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing III V multijunction solar cells on silicon

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Connolly, James Patrick es_ES
dc.contributor.author Mencaraglia, Denis es_ES
dc.contributor.author Renard, Charles es_ES
dc.contributor.author Bouchier, Daniel es_ES
dc.date.accessioned 2017-06-26T07:15:46Z
dc.date.available 2017-06-26T07:15:46Z
dc.date.issued 2014-07
dc.identifier.issn 1062-7995
dc.identifier.uri http://hdl.handle.net/10251/83586
dc.description.abstract [EN] Single junction Si solar cells dominate photovoltaics but are close to their efficiency limits. This paper presents ideal limiting efficiencies for tandem and triple junction multijunction solar cells featuring a Si subcell also serving as substrate. Subject to this Si bandgap constraint, we design optimum cell structures that we show depart from the unconstrained ideal. In order to progress to manufacturable designs, the use of III-V materials is considered, using a novel growth method capable of yielding low defect density III-V layers on Si. In order to evaluate the real potential of these proposed multijunction designs, a quantitative model is presented, the strength of which is the joint modelling of external quantum efficiency and current-voltage characteristics using the same parameters. The method yields a single-parameter fit in terms of the Shockley-Read-Hall lifetime. This model is validated by fitting experimental data of external quantum efficiency, dark current and conversion efficiency of world record tandem and triple junction cells under terrestrial solar spectra without concentration. We apply this quantitative model to the design of tandem and triple junction solar cells, yielding cell designs capable of reaching efficiencies without concentration of 32% for the best tandem cell and 36% for the best triple junction cell. This demonstrates that efficiencies within a few per cent of world records are realistically achievable without the use of concentrating optics, with growth methods being developed for multijunction cells combining III-V and Si materials. Copyright (c) 2014 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship The MULTISOLSI project is funded by the French Agence Nationale pour la Recherche under the programme ANR PROGELEC 2011 (ref. ANR-11-PRGE-0009). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Progress in Photovoltaics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Modelling es_ES
dc.subject Multijunction es_ES
dc.subject Silicon es_ES
dc.subject III V es_ES
dc.subject Terrestrial es_ES
dc.subject High efficiency es_ES
dc.title Designing III V multijunction solar cells on silicon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pip.2463
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-PRGE-0009/FR/MULTI spectral SOLar cells based on SIlicon/MULTISOLSI/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Connolly, JP.; Mencaraglia, D.; Renard, C.; Bouchier, D. (2014). Designing III V multijunction solar cells on silicon. Progress in Photovoltaics. 22(7):810-820. doi:10.1002/pip.2463 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/ 10.1002/pip.2463 es_ES
dc.description.upvformatpinicio 810 es_ES
dc.description.upvformatpfin 820 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 268082 es_ES
dc.identifier.eissn 1099-159X
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem