- -

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

Mostrar el registro completo del ítem

Ginzburg, P.; Rodríguez Fortuño, FJ.; Wurtz, G.; Dickson, W.; Murphy, A.; Morgan, F.; Pollard, R.... (2013). Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Optics Express. 21(12):14907-14917. doi:10.1364/OE.21.014907

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84335

Ficheros en el ítem

Metadatos del ítem

Título: Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials
Autor: Ginzburg, Pavel Rodríguez Fortuño, Francisco José Wurtz, G.A. Dickson, W. Murphy, Antony Morgan, F. Pollard, Robert Iorsh, Ivan Atrashchenko, Alexander Belov, Pavel Kivshar, Y.S. Nevet, A. Ankonina, G. Orenstein, M. Zayats, A.V.
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] One of the basic functionalities of photonic devices is the ability to manipulate the polarization state of light. Polarization components are usually implemented using the retardation effect in natural birefringent ...[+]
Palabras clave: Metamaterials , Polarization , Enz
Derechos de uso: Cerrado
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.21.014907
Editorial:
Optical Society of America
Versión del editor: http://doi.org/10.1364/OE.21.014907
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/321268/EU/Frontiers in nanophotonics: integrated plasmonic metamaterials devices/
Agradecimientos:
This work has been supported in part by EPSRC (UK) and ERC. P. G. acknowledges support from the Royal Society via the Newton International Fellowship.
Tipo: Artículo

References

Papakostas, A., Potts, A., Bagnall, D. M., Prosvirnin, S. L., Coles, H. J., & Zheludev, N. I. (2003). Optical Manifestations of Planar Chirality. Physical Review Letters, 90(10). doi:10.1103/physrevlett.90.107404

Hentschel, M., Schäferling, M., Weiss, T., Liu, N., & Giessen, H. (2012). Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 12(5), 2542-2547. doi:10.1021/nl300769x

Helgert, C., Pshenay-Severin, E., Falkner, M., Menzel, C., Rockstuhl, C., Kley, E.-B., … Pertsch, T. (2011). Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures. Nano Letters, 11(10), 4400-4404. doi:10.1021/nl202565e [+]
Papakostas, A., Potts, A., Bagnall, D. M., Prosvirnin, S. L., Coles, H. J., & Zheludev, N. I. (2003). Optical Manifestations of Planar Chirality. Physical Review Letters, 90(10). doi:10.1103/physrevlett.90.107404

Hentschel, M., Schäferling, M., Weiss, T., Liu, N., & Giessen, H. (2012). Three-Dimensional Chiral Plasmonic Oligomers. Nano Letters, 12(5), 2542-2547. doi:10.1021/nl300769x

Helgert, C., Pshenay-Severin, E., Falkner, M., Menzel, C., Rockstuhl, C., Kley, E.-B., … Pertsch, T. (2011). Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures. Nano Letters, 11(10), 4400-4404. doi:10.1021/nl202565e

Drezet, A., Genet, C., Laluet, J.-Y., & Ebbesen, T. W. (2008). Optical chirality without optical activity: How surface plasmons give a twist to light. Optics Express, 16(17), 12559. doi:10.1364/oe.16.012559

Ellenbogen, T., Seo, K., & Crozier, K. B. (2012). Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry. Nano Letters, 12(2), 1026-1031. doi:10.1021/nl204257g

Zhao, Y., Belkin, M. A., & Alù, A. (2012). Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications, 3(1). doi:10.1038/ncomms1877

Gansel, J. K., Thiel, M., Rill, M. S., Decker, M., Bade, K., Saile, V., … Wegener, M. (2009). Gold Helix Photonic Metamaterial as Broadband Circular Polarizer. Science, 325(5947), 1513-1515. doi:10.1126/science.1177031

Zheludev, N. I., Plum, E., & Fedotov, V. A. (2011). Metamaterial polarization spectral filter: Isolated transmission line at any prescribed wavelength. Applied Physics Letters, 99(17), 171915. doi:10.1063/1.3656286

Atatüre, M., Dreiser, J., Badolato, A., & Imamoglu, A. (2007). Observation of Faraday rotation from a single confined spin. Nature Physics, 3(2), 101-106. doi:10.1038/nphys521

Crassee, I., Levallois, J., Walter, A. L., Ostler, M., Bostwick, A., Rotenberg, E., … Kuzmenko, A. B. (2010). Giant Faraday rotation in single- and multilayer graphene. Nature Physics, 7(1), 48-51. doi:10.1038/nphys1816

Simovski, C. R., Belov, P. A., Atrashchenko, A. V., & Kivshar, Y. S. (2012). Wire Metamaterials: Physics and Applications. Advanced Materials, 24(31), 4229-4248. doi:10.1002/adma.201200931

Wurtz, G. A., Pollard, R., Hendren, W., Wiederrecht, G. P., Gosztola, D. J., Podolskiy, V. A., & Zayats, A. V. (2011). Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology, 6(2), 107-111. doi:10.1038/nnano.2010.278

Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., … Zayats, A. V. (2009). Plasmonic nanorod metamaterials for biosensing. Nature Materials, 8(11), 867-871. doi:10.1038/nmat2546

Podolskiy, V. A., & Narimanov, E. E. (2005). Strongly anisotropic waveguide as a nonmagnetic left-handed system. Physical Review B, 71(20). doi:10.1103/physrevb.71.201101

Ginzburg, P., & Orenstein, M. (2008). Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures. Journal of Applied Physics, 103(8), 083105. doi:10.1063/1.2906183

Ginzburg, P., & Orenstein, M. (2008). Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification. Journal of Applied Physics, 104(6), 063513. doi:10.1063/1.2978208

Cortes, C. L., Newman, W., Molesky, S., & Jacob, Z. (2012). Quantum nanophotonics using hyperbolic metamaterials. Journal of Optics, 14(6), 063001. doi:10.1088/2040-8978/14/6/063001

Poddubny, A. N., Belov, P. A., Ginzburg, P., Zayats, A. V., & Kivshar, Y. S. (2012). Microscopic model of Purcell enhancement in hyperbolic metamaterials. Physical Review B, 86(3). doi:10.1103/physrevb.86.035148

Ziolkowski, R. W. (2004). Propagation in and scattering from a matched metamaterial having a zero index of refraction. Physical Review E, 70(4). doi:10.1103/physreve.70.046608

Silveirinha, M., & Engheta, N. (2006). Tunneling of Electromagnetic Energy through Subwavelength Channels and Bends usingε-Near-Zero Materials. Physical Review Letters, 97(15). doi:10.1103/physrevlett.97.157403

Edwards, B., Alù, A., Young, M. E., Silveirinha, M., & Engheta, N. (2008). Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Physical Review Letters, 100(3). doi:10.1103/physrevlett.100.033903

Liu, R., Cheng, Q., Hand, T., Mock, J. J., Cui, T. J., Cummer, S. A., & Smith, D. R. (2008). Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Physical Review Letters, 100(2). doi:10.1103/physrevlett.100.023903

Ginzburg, P., Nevet, A., Berkovitch, N., Normatov, A., Lerman, G. M., Yanai, A., … Orenstein, M. (2011). Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas. Nano Letters, 11(1), 220-224. doi:10.1021/nl103585j

Normatov, A., Ginzburg, P., Berkovitch, N., Lerman, G. M., Yanai, A., Levy, U., & Orenstein, M. (2010). Efficient coupling and field enhancement for the nano-scale: plasmonic needle. Optics Express, 18(13), 14079. doi:10.1364/oe.18.014079

Atkinson, R., Hendren, W. R., Wurtz, G. A., Dickson, W., Zayats, A. V., Evans, P., & Pollard, R. J. (2006). Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Physical Review B, 73(23). doi:10.1103/physrevb.73.235402

Pollard, R. J., Murphy, A., Hendren, W. R., Evans, P. R., Atkinson, R., Wurtz, G. A., … Podolskiy, V. A. (2009). Optical Nonlocalities and Additional Waves in Epsilon-Near-Zero Metamaterials. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.127405

Liu, N., Liu, H., Zhu, S., & Giessen, H. (2009). Stereometamaterials. Nature Photonics, 3(3), 157-162. doi:10.1038/nphoton.2009.4

Ginzburg, P., Rodríguez-Fortuño, F. J., Martínez, A., & Zayats, A. V. (2012). Analogue of the Quantum Hanle Effect and Polarization Conversion in Non-Hermitian Plasmonic Metamaterials. Nano Letters, 12(12), 6309-6314. doi:10.1021/nl3034174

Ren, M., Plum, E., Xu, J., & Zheludev, N. I. (2012). Giant nonlinear optical activity in a plasmonic metamaterial. Nature Communications, 3(1). doi:10.1038/ncomms1805

Alekseyev, L. V., Narimanov, E. E., Tumkur, T., Li, H., Barnakov, Y. A., & Noginov, M. A. (2010). Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control. Applied Physics Letters, 97(13), 131107. doi:10.1063/1.3469925

Kullock, R., Hendren, W. R., Hille, A., Grafström, S., Evans, P. R., Pollard, R. J., … Eng, L. M. (2008). Polarization conversion through collective surface plasmons in metallic nanorod arrays. Optics Express, 16(26), 21671. doi:10.1364/oe.16.021671

Li, T., Wang, S. M., Cao, J. X., Liu, H., & Zhu, S. N. (2010). Cavity-involved plasmonic metamaterial for optical polarization conversion. Applied Physics Letters, 97(26), 261113. doi:10.1063/1.3533912

Li, T., Liu, H., Wang, S.-M., Yin, X.-G., Wang, F.-M., Zhu, S.-N., & Zhang, X. (2008). Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations. Applied Physics Letters, 93(2), 021110. doi:10.1063/1.2958214

Hao, J., Yuan, Y., Ran, L., Jiang, T., Kong, J. A., Chan, C. T., & Zhou, L. (2007). Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials. Physical Review Letters, 99(6). doi:10.1103/physrevlett.99.063908

Yeh, P. (1980). Optics of anisotropic layered media: A new 4 × 4 matrix algebra. Surface Science, 96(1-3), 41-53. doi:10.1016/0039-6028(80)90293-9

Chang, W.-S., Lassiter, J. B., Swanglap, P., Sobhani, H., Khatua, S., Nordlander, P., … Link, S. (2012). A Plasmonic Fano Switch. Nano Letters, 12(9), 4977-4982. doi:10.1021/nl302610v

Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 737-748. doi:10.1038/nphoton.2012.244

Elser, J., Wangberg, R., Podolskiy, V. A., & Narimanov, E. E. (2006). Nanowire metamaterials with extreme optical anisotropy. Applied Physics Letters, 89(26), 261102. doi:10.1063/1.2422893

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem