- -

Figures of merit for self-beating filtered microwave photonic systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Figures of merit for self-beating filtered microwave photonic systems

Mostrar el registro completo del ítem

Pérez-López, D.; Gasulla Mestre, I.; Capmany Francoy, J.; Sánchez Fandiño, JA.; Muñoz Muñoz, P.; Alavi, H. (2016). Figures of merit for self-beating filtered microwave photonic systems. Optics Express. 24(9):10087-10102. https://doi.org/10.1364/OE.24.010087

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84793

Ficheros en el ítem

Metadatos del ítem

Título: Figures of merit for self-beating filtered microwave photonic systems
Autor: Pérez-López, Daniel Gasulla Mestre, Ivana Capmany Francoy, José Sánchez Fandiño, Javier Antonio Muñoz Muñoz, Pascual Alavi, Hossein
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació
Fecha difusión:
Resumen:
[EN] We present a model to compute the figures of merit of self-beating Microwave Photonic systems, a novel class of systems that work on a self-homodyne fashion by sharing the same laser source for information bearing and ...[+]
Palabras clave: Fiber optics links and subsystems (060.2360) , Radio frequency photonics (060.5625) , Optoelectronics (130.0250) , Integrated optics devices (130.3120) , Microwaves (350.4010)
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.24.010087
Editorial:
Optical Society of America
Versión del editor: http://dx.doi.org/10.1364/OE.24.010087
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/
...[+]
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/
info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/
info:eu-repo/grantAgreement/MINECO//TEC2015-69787-REDT/ES/PHOTONIC INTEGRATED CIRCUITS FOR TELECOM & BIO/
info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/
info:eu-repo/grantAgreement/MICINN//UPOV10-3E-492/ES/Instrumentación para la caracterización de sistemas y componentes en comunicaciones ópticas avanzadas/
info:eu-repo/grantAgreement/MICINN//UPOV08-3E-008/ES/INSTRUMENTACION AVANZADA PARA COMUNICACIONES OPTICAS/
[-]
Descripción: © 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited
Agradecimientos:
This research work is funded by INTEL Corporation. In addition, the authors wish to acknowledge the financial support given by the Research Excellency Award Program GVA PROMETEO II/2013/012, Spanish MINECO projects ...[+]
Tipo: Artículo

References

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551

Mitchell, J. E. (2014). Integrated Wireless Backhaul Over Optical Access Networks. Journal of Lightwave Technology, 32(20), 3373-3382. doi:10.1109/jlt.2014.2321774 [+]
Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Yao, J. (2009). Microwave Photonics. Journal of Lightwave Technology, 27(3), 314-335. doi:10.1109/jlt.2008.2009551

Mitchell, J. E. (2014). Integrated Wireless Backhaul Over Optical Access Networks. Journal of Lightwave Technology, 32(20), 3373-3382. doi:10.1109/jlt.2014.2321774

Pastor, D., Ortega, B., Capmany, J., Fonjallaz, P.-Y., & Popov, M. (2004). Tunable microwave photonic filter for noise and interference suppression in UMTS base stations. Electronics Letters, 40(16), 997. doi:10.1049/el:20045500

Long live radio. (2011). Nature Photonics, 5(12), 723-723. doi:10.1038/nphoton.2011.316

Ricchiuti, A. L., Hervas, J., Barrera, D., Sales, S., & Capmany, J. (2014). Microwave Photonics Filtering Technique for Interrogating a Very-Weak Fiber Bragg Grating Cascade Sensor. IEEE Photonics Journal, 6(6), 1-10. doi:10.1109/jphot.2014.2363443

Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., & Capmany, J. (2013). Integrated microwave photonics. Laser & Photonics Reviews, 7(4), 506-538. doi:10.1002/lpor.201200032

Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., & Sales, S. (2013). Microwave Photonic Signal Processing. Journal of Lightwave Technology, 31(4), 571-586. doi:10.1109/jlt.2012.2222348

Roeloffzen, C. G. H., Zhuang, L., Taddei, C., Leinse, A., Heideman, R. G., van Dijk, P. W. L., … Boller, K.-J. (2013). Silicon nitride microwave photonic circuits. Optics Express, 21(19), 22937. doi:10.1364/oe.21.022937

Gasulla, I., & Capmany, J. (2011). Analytical model and figures of merit for filtered Microwave photonic links. Optics Express, 19(20), 19758. doi:10.1364/oe.19.019758

Xie, H., Oliaei, O., Rakers, P., Fernandez, R., Xiang, J., Parkes, J., … Schwartz, D. B. (2012). Single-Chip Multiband EGPRS and SAW-Less LTE WCDMA CMOS Receiver With Diversity. IEEE Transactions on Microwave Theory and Techniques, 60(5), 1390-1396. doi:10.1109/tmtt.2012.2187796

Rasras, M. S., Chen, Y.-K., Tu, K.-Y., Earnshaw, M. P., Pardo, F., Cappuzzo, M. A., … DeSalvo, R. (2012). Reconfigurable Linear Optical FM Discriminator. IEEE Photonics Technology Letters, 24(20), 1856-1859. doi:10.1109/lpt.2012.2217483

Alipour, P., Eftekhar, A. A., Atabaki, A. H., Li, Q., Yegnanarayanan, S., Madsen, C. K., & Adibi, A. (2011). Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators. Optics Express, 19(17), 15899. doi:10.1364/oe.19.015899

Ibrahim, S., Fontaine, N. K., Djordjevic, S. S., Guan, B., Su, T., Cheung, S., … Yoo, S. J. B. (2011). Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter. Optics Express, 19(14), 13245. doi:10.1364/oe.19.013245

Fandiño, J. S., Doménech, J. D., Muñoz, P., & Capmany, J. (2013). Integrated InP frequency discriminator for Phase-modulated microwave photonic links. Optics Express, 21(3), 3726. doi:10.1364/oe.21.003726

Pérez, D., Gasulla, I., & Capmany, J. (2015). Software-defined reconfigurable microwave photonics processor. Optics Express, 23(11), 14640. doi:10.1364/oe.23.014640

Capmany, J., Gasulla, I., & Pérez, D. (2015). The programmable processor. Nature Photonics, 10(1), 6-8. doi:10.1038/nphoton.2015.254

Liu, W., Li, M., Guzzon, R. S., Norberg, E. J., Parker, J. S., Lu, M., … Yao, J. (2016). A fully reconfigurable photonic integrated signal processor. Nature Photonics, 10(3), 190-195. doi:10.1038/nphoton.2015.281

Madsen, C. K. (1998). Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photonics Technology Letters, 10(8), 1136-1138. doi:10.1109/68.701527

Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem