- -

Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carretero Paulet, Lorenzo es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.date.accessioned 2017-07-13T12:09:53Z
dc.date.available 2017-07-13T12:09:53Z
dc.date.issued 2012-11
dc.identifier.issn 0737-4038
dc.identifier.uri http://hdl.handle.net/10251/85098
dc.description.abstract [EN] Gene duplicates are a major source of evolutionary novelties in the form of new or specialized functions and play a key role in speciation. Gene duplicates are generated through whole genome duplications (WGD) or small-scale genome duplications (SSD). Although WGD preserves the stoichiometric relationships between duplicates, those arising from SSD are usually unbalanced and are expected to follow different evolutionary dynamics than those formed by WGD. To dissect the role of the mechanism of duplication in these differential dynamics and determine whether this role was shared across species, we performed a genome wide evolutionary analysis of gene duplications arising from the most recent WGD events and contemporary episodes of SSD in four model species representing distinct plant evolutionary lineages. We found an excess of relaxed purifying selection after duplication in SSD paralogs compared with WGD, most of which may have been the result of functional divergence events between gene copies as estimated by measures of genetic distances. These differences were significant in three angiosperm genomes but not in the moss species Physcomitrella patens. Although the comparison of models of evolution does not attribute a relevant role to the mechanism of duplication in the evolution duplicates, distribution of retained genes among Gene Ontology functional categories support the conclusion that evolution of gene duplicates depends on its origin of duplication (WGD and SSD) but, most importantly, on the species. Similar lineage-specific biases were also observed in protein network connectivity, translational efficiency, and selective constraints acting on synonymous codon usage. Although the mechanism of duplication may determine gene retention, our results attribute a dominant role to the species in determining the ultimate pattern of duplicate gene retention and reveal an unanticipated complexity in the evolutionary dynamics and functional specialization of duplicated genes in plants. es_ES
dc.description.sponsorship This work has been performed making extensive use of PERL scripts and Bioperl and R packages. The authors thank the Bioperl community for continuous support. They are especially grateful to Ken Wolfe, Santiago F Elena, David L Robertson, and Manuel Rodriguez-Concepcion for critical reading of the manuscript. This work was supported by a grant from the Spanish Ministerio de Ciencia e Inovacion (BFU2009-12022) and a grant of the Research Frontiers Program (10/RFP/GEN2685) from Science Foundation Ireland. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Molecular Biology and Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gene duplication es_ES
dc.subject Functional specialization es_ES
dc.subject Whole genome duplication es_ES
dc.subject Small-scale genome duplication es_ES
dc.title Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/molbev/mss162
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Carretero Paulet, L.; Fares Riaño, MA. (2012). Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Molecular Biology and Evolution. 29(11):3541-3551. https://doi.org/10.1093/molbev/mss162 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1093/molbev/mss162 es_ES
dc.description.upvformatpinicio 3541 es_ES
dc.description.upvformatpfin 3551 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 232821 es_ES
dc.identifier.pmid 22734049
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Science Foundation Ireland
dc.description.references Aharoni, A., Gaidukov, L., Khersonsky, O., Gould, S. M., Roodveldt, C., & Tawfik, D. S. (2004). The «evolvability» of promiscuous protein functions. Nature Genetics, 37(1), 73-76. doi:10.1038/ng1482 es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. doi:10.1038/35048692 es_ES
dc.description.references Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 es_ES
dc.description.references Bielawski, J., & Yang, Z. (2004). A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution. Journal of Molecular Evolution, 59(1). doi:10.1007/s00239-004-2597-8 es_ES
dc.description.references Blanc, G. (2003). A Recent Polyploidy Superimposed on Older Large-Scale Duplications in the Arabidopsis Genome. Genome Research, 13(2), 137-144. doi:10.1101/gr.751803 es_ES
dc.description.references Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410 es_ES
dc.description.references Blanc, G., & Wolfe, K. H. (2004). Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. The Plant Cell, 16(7), 1667-1678. doi:10.1105/tpc.021345 es_ES
dc.description.references Bowers, J. E., Chapman, B. A., Rong, J., & Paterson, A. H. (2003). Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature, 422(6930), 433-438. doi:10.1038/nature01521 es_ES
dc.description.references Castresana, J. (2000). Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17(4), 540-552. doi:10.1093/oxfordjournals.molbev.a026334 es_ES
dc.description.references Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482 es_ES
dc.description.references Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 es_ES
dc.description.references DEBODT, S., MAERE, S., & VANDEPEER, Y. (2005). Genome duplication and the origin of angiosperms. Trends in Ecology & Evolution, 20(11), 591-597. doi:10.1016/j.tree.2005.07.008 es_ES
dc.description.references Dos Reis, M., & Wernisch, L. (2008). Estimating Translational Selection in Eukaryotic Genomes. Molecular Biology and Evolution, 26(2), 451-461. doi:10.1093/molbev/msn272 es_ES
dc.description.references Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102 es_ES
dc.description.references Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042 es_ES
dc.description.references Duret, L. (2002). Evolution of synonymous codon usage in metazoans. Current Opinion in Genetics & Development, 12(6), 640-649. doi:10.1016/s0959-437x(02)00353-2 es_ES
dc.description.references Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340 es_ES
dc.description.references Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579 es_ES
dc.description.references Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.3681406 es_ES
dc.description.references Ganko, E. W., Meyers, B. C., & Vision, T. J. (2007). Divergence in Expression between Duplicated Genes in Arabidopsis. Molecular Biology and Evolution, 24(10), 2298-2309. doi:10.1093/molbev/msm158 es_ES
dc.description.references Geisler-Lee, J., O’Toole, N., Ammar, R., Provart, N. J., Millar, A. H., & Geisler, M. (2007). A Predicted Interactome for Arabidopsis. Plant Physiology, 145(2), 317-329. doi:10.1104/pp.107.103465 es_ES
dc.description.references Gu, Z., Steinmetz, L. M., Gu, X., Scharfe, C., Davis, R. W., & Li, W.-H. (2003). Role of duplicate genes in genetic robustness against null mutations. Nature, 421(6918), 63-66. doi:10.1038/nature01198 es_ES
dc.description.references Hakes, L., Pinney, J. W., Lovell, S. C., Oliver, S. G., & Robertson, D. L. (2007). All duplicates are not equal: the difference between small-scale and genome duplication. Genome Biology, 8(10), R209. doi:10.1186/gb-2007-8-10-r209 es_ES
dc.description.references He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051 es_ES
dc.description.references Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 es_ES
dc.description.references Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. doi:10.1159/000084979 es_ES
dc.description.references Li, W.-H., Gu, Z., Wang, H., & Nekrutenko, A. (2001). Evolutionary analyses of the human genome. Nature, 409(6822), 847-849. doi:10.1038/35057039 es_ES
dc.description.references Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 es_ES
dc.description.references Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., & Van de Peer, Y. (2005). Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences, 102(15), 5454-5459. doi:10.1073/pnas.0501102102 es_ES
dc.description.references Moore, R. C., & Purugganan, M. D. (2005). The evolutionary dynamics of plant duplicate genes. Current Opinion in Plant Biology, 8(2), 122-128. doi:10.1016/j.pbi.2004.12.001 es_ES
dc.description.references Ohno, S. (1970). Evolution by Gene Duplication. doi:10.1007/978-3-642-86659-3 es_ES
dc.description.references OHTA, T. (1973). Slightly Deleterious Mutant Substitutions in Evolution. Nature, 246(5428), 96-98. doi:10.1038/246096a0 es_ES
dc.description.references Papp, B., Pál, C., & Hurst, L. D. (2003). Dosage sensitivity and the evolution of gene families in yeast. Nature, 424(6945), 194-197. doi:10.1038/nature01771 es_ES
dc.description.references Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y., & Vandepoele, K. (2009). PLAZA: A Comparative Genomics Resource to Study Gene and Genome Evolution in Plants. The Plant Cell, 21(12), 3718-3731. doi:10.1105/tpc.109.071506 es_ES
dc.description.references Rensing, S. A., Ick, J., Fawcett, J. A., Lang, D., Zimmer, A., Van de Peer, Y., & Reski, R. (2007). An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 7(1), 130. doi:10.1186/1471-2148-7-130 es_ES
dc.description.references Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., … Kamisugi, Y. (2007). The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 319(5859), 64-69. doi:10.1126/science.1150646 es_ES
dc.description.references Sharp, P. M., & Li, W.-H. (1987). The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281-1295. doi:10.1093/nar/15.3.1281 es_ES
dc.description.references Simillion, C., Vandepoele, K., Van Montagu, M. C. E., Zabeau, M., & Van de Peer, Y. (2002). The hidden duplication past of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 99(21), 13627-13632. doi:10.1073/pnas.212522399 es_ES
dc.description.references Sterck, L., Rombauts, S., Jansson, S., Sterky, F., Rouzé, P., & Van de Peer, Y. (2005). EST data suggest that poplar is an ancient polyploid. New Phytologist, 167(1), 165-170. doi:10.1111/j.1469-8137.2005.01378.x es_ES
dc.description.references Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 es_ES
dc.description.references Vision, T. J., Brown, D. G., & Tanksley, S. D. (2000). The Origins of Genomic Duplications in Arabidopsis. Science, 290(5499), 2114-2117. doi:10.1126/science.290.5499.2114 es_ES
dc.description.references Xia, X. (2007). An Improved Implementation of Codon Adaptation Index. Evolutionary Bioinformatics, 3, 117693430700300. doi:10.1177/117693430700300028 es_ES
dc.description.references Yang, L., & Gaut, B. S. (2011). Factors that Contribute to Variation in Evolutionary Rate among Arabidopsis Genes. Molecular Biology and Evolution, 28(8), 2359-2369. doi:10.1093/molbev/msr058 es_ES
dc.description.references Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 es_ES
dc.description.references Yang, Z., & Nielsen, R. (2002). Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites Along Specific Lineages. Molecular Biology and Evolution, 19(6), 908-917. doi:10.1093/oxfordjournals.molbev.a004148 es_ES
dc.description.references Yang, Z., & Nielsen, R. (2008). Mutation-Selection Models of Codon Substitution and Their Use to Estimate Selective Strengths on Codon Usage. Molecular Biology and Evolution, 25(3), 568-579. doi:10.1093/molbev/msm284 es_ES
dc.description.references Zhang, J. (2003). Evolution by gene duplication: an update. Trends in Ecology & Evolution, 18(6), 292-298. doi:10.1016/s0169-5347(03)00033-8 es_ES
dc.description.references Zhang, J. (2005). Evaluation of an Improved Branch-Site Likelihood Method for Detecting Positive Selection at the Molecular Level. Molecular Biology and Evolution, 22(12), 2472-2479. doi:10.1093/molbev/msi237 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem