- -

Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lebourg, Myriam Madeleine es_ES
dc.contributor.author Martínez Díaz, S. es_ES
dc.contributor.author Garcia Giralt, Natalia es_ES
dc.contributor.author Torres Claramunt, R. es_ES
dc.contributor.author Gómez-Tejedor, José Antonio es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Vila Canet, G es_ES
dc.contributor.author Monllau, J.C. es_ES
dc.date.accessioned 2017-07-20T11:19:43Z
dc.date.available 2017-07-20T11:19:43Z
dc.date.issued 2014-05
dc.identifier.issn 0885-3282
dc.identifier.uri http://hdl.handle.net/10251/85547
dc.description.abstract Polycaprolactone scaffolds modified with cross-linked hyaluronic acid were prepared in order to establish whether a more hydrophilic and biomimetic microenvironment benefits the progenitor cells arriving from bone marrow in a cell- free tissue-engineering approach. The polycaprolactone and polycaprolactone/hyaluronic acid scaffolds were characterized in terms of morphology and water absorption capacity. The polycaprolactone and polycaprolactone/hyaluronic acid samples were implanted in a chondral defect in rabbits; bleeding of the subchondral bone was provoked to generate a spontaneous healing response. Repair at 1, 4, 12, and 24 weeks was assessed macroscopically using the International Cartilage Repair Society score and the Oswestry Arthroscopy Score and microscopically using immunohistological staining for collagen type I and type II, and for Ki-67. The presence of hyaluronic acid improves scaffold performance, which supports a good repair response without biomaterial pre-seeding. es_ES
dc.description.sponsorship JLGR, JAGT and JCM acknowledge the support of the Spanish Ministry of Science through projects No. MAT2010-21611-C03-01 and -02. The support of Grant 2005SGR 00762 and 2005SGR 00848 (Catalan Department of Universities, Research and the Information Society) and the Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF) is also acknowledged. Myriam Lebourg acknowledges funding from UPV through the PAID-10 project funds and from CIBER-BBN. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Journal of Biomaterials Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cell-free PCL scaffold es_ES
dc.subject Cartilage regeneration es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Osteoarthritis es_ES
dc.subject Tissue engineering es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0885328213507298
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
dc.relation.projectID info:eu-repo/grantAgreement/GC//2005SGR-00848/
dc.relation.projectID info:eu-repo/grantAgreement/GC//2005SGR-00762/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Lebourg, MM.; Martínez Díaz, S.; Garcia Giralt, N.; Torres Claramunt, R.; Gómez-Tejedor, JA.; Gómez Ribelles, JL.; Vila Canet, G.... (2014). Cell-free cartilage engineering approach using hyaluronic acid-polycaprolactone scaffolds: A study invivo. Journal of Biomaterials Applications. 28(9):1304-1315. https://doi.org/10.1177/0885328213507298 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0885328213507298 es_ES
dc.description.upvformatpinicio 1304 es_ES
dc.description.upvformatpfin 1315 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 282362 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat de Catalunya
dc.contributor.funder Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Instituto de Salud Carlos III
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Van der Kraan, P. M., Buma, P., van Kuppevelt, T., & van Den Berg, W. B. (2002). Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis and Cartilage, 10(8), 631-637. doi:10.1053/joca.2002.0806 es_ES
dc.description.references Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 es_ES
dc.description.references Patti, A. M., Gabriele, A., Vulcano, A., Ramieri, M. T., & Della Rocca, C. (2001). Effect of hyaluronic acid on human chondrocyte cell lines from articular cartilage. Tissue and Cell, 33(3), 294-300. doi:10.1054/tice.2001.0178 es_ES
dc.description.references Yoo, H. S., Lee, E. A., Yoon, J. J., & Park, T. G. (2005). Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials, 26(14), 1925-1933. doi:10.1016/j.biomaterials.2004.06.021 es_ES
dc.description.references Grigolo, B., De Franceschi, L., Roseti, L., Cattini, L., & Facchini, A. (2005). Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials, 26(28), 5668-5676. doi:10.1016/j.biomaterials.2005.02.030 es_ES
dc.description.references Girotto, D., Urbani, S., Brun, P., Renier, D., Barbucci, R., & Abatangelo, G. (2003). Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials, 24(19), 3265-3275. doi:10.1016/s0142-9612(03)00160-1 es_ES
dc.description.references Brun, P., Panfilo, S., Daga Gordini, D., Cortivo, R., & Abatangelo, G. (2003). The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis and Cartilage, 11(3), 208-216. doi:10.1016/s1063-4584(02)00352-7 es_ES
dc.description.references Ho, M.-H., Kuo, P.-Y., Hsieh, H.-J., Hsien, T.-Y., Hou, L.-T., Lai, J.-Y., & Wang, D.-M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. doi:10.1016/s0142-9612(03)00483-6 es_ES
dc.description.references Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sj??gren-Jansson, E., & Lindahl, A. (2000). Two- to 9-Year Outcome After Autologous Chondrocyte Transplantation of the Knee. Clinical Orthopaedics and Related Research, 374, 212-234. doi:10.1097/00003086-200005000-00020 es_ES
dc.description.references Smith, G. D., Taylor, J., Almqvist, K. F., Erggelet, C., Knutsen, G., Portabella, M. G., … Richardson, J. B. (2005). Arthroscopic Assessment of Cartilage Repair: A Validation Study of 2 Scoring Systems. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 21(12), 1462-1467. doi:10.1016/j.arthro.2005.09.007 es_ES
dc.description.references Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005 es_ES
dc.description.references Trzeciak, T., Kruczyński, J., Jaroszewski, J., & Lubiatowski, P. (2006). Evaluation of Cartilage Reconstruction by Means of Autologous Chondrocyte Versus Periosteal Graft Transplantation: An Animal Study. Transplantation Proceedings, 38(1), 305-311. doi:10.1016/j.transproceed.2005.12.028 es_ES
dc.description.references Ito, S., Sato, M., Yamato, M., Mitani, G., Kutsuna, T., Nagai, T., … Mochida, J. (2012). Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials, 33(21), 5278-5286. doi:10.1016/j.biomaterials.2012.03.073 es_ES
dc.description.references Lebourg, M., Rochina, J. R., Sousa, T., Mano, J., & Ribelles, J. L. G. (2012). Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. Journal of Biomedical Materials Research Part A, 101A(2), 518-527. doi:10.1002/jbm.a.34349 es_ES
dc.description.references Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., & Peterson, L. (1996). Rabbit Articular Cartilage Defects Treated With Autologous Cultured Chondrocytes. Clinical Orthopaedics and Related Research, 326, 270-283. doi:10.1097/00003086-199605000-00034 es_ES
dc.description.references Wang, Y., Bian, Y.-Z., Wu, Q., & Chen, G.-Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 29(19), 2858-2868. doi:10.1016/j.biomaterials.2008.03.021 es_ES
dc.description.references Hunziker, E. B. (2002). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432-463. doi:10.1053/joca.2002.0801 es_ES
dc.description.references Shapiro, F., Koide, S., & Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. The Journal of Bone & Joint Surgery, 75(4), 532-553. doi:10.2106/00004623-199304000-00009 es_ES
dc.description.references Maher, S. A., Doty, S. B., Torzilli, P. A., Thornton, S., Lowman, A. M., Thomas, J. D., … Myers, E. (2007). Nondegradable hydrogels for the treatment of focal cartilage defects. Journal of Biomedical Materials Research Part A, 83A(1), 145-155. doi:10.1002/jbm.a.31255 es_ES
dc.description.references Hunziker, E. B., Kapfinger, E., & Geiss, J. (2007). The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis and Cartilage, 15(4), 403-413. doi:10.1016/j.joca.2006.09.010 es_ES
dc.description.references Cohen, S. (2003). The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials, 24(15), 2653-2660. doi:10.1016/s0142-9612(03)00058-9 es_ES
dc.description.references Köse, G. T., Korkusuz, F., Özkul, A., Soysal, Y., Özdemir, T., Yildiz, C., & Hasirci, V. (2005). Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials, 26(25), 5187-5197. doi:10.1016/j.biomaterials.2005.01.037 es_ES
dc.description.references Dowthwaite, G. P. (2004). The surface of articular cartilage contains a progenitor cell population. Journal of Cell Science, 117(6), 889-897. doi:10.1242/jcs.00912 es_ES
dc.description.references Grogan, S. P., Barbero, A., Diaz-Romero, J., Cleton-Jansen, A.-M., Soeder, S., Whiteside, R., … Mainil-Varlet, P. (2007). Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis & Rheumatism, 56(2), 586-595. doi:10.1002/art.22408 es_ES
dc.description.references Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076-1084. doi:10.1002/jcb.20886 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem