- -

Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortuño-Lizarán, Isabel es_ES
dc.contributor.author Vilariño, Guillermo es_ES
dc.contributor.author Martínez-Ramos, Cristina es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.date.accessioned 2018-02-22T05:24:31Z
dc.date.available 2018-02-22T05:24:31Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1758-5082 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98274
dc.description.abstract [EN] Hydrogels have widely been proposed lately as strategies for neural tissue regeneration, but there are still some issues to be solved before their efficient use in tissue engineering of trauma, stroke or the idiopathic degeneration of the nervous system. In a previous work of the authors a novel Schwann-cell structure with the shape of a hollow cylinder was obtained using a three-dimensional conduit based in crosslinked hyaluronic acid as template. This original engineered tissue of tightly joined Schwann cells obtained in a conduit lumen having 400 mu m in diameter is a consequence of specific cell-material interactions. In the present work we analyze the influence of the hydrogel concentration and of the drying process on the physicochemical and biological performance of the resulting tubular scaffolds, and prove that the cylinder-like cell sheath obtains also in scaffolds of a larger inner diameter. The diffusion of glucose and of the protein BSA through the scaffolds is studied and characterized, as well as the enzymatic degradation kinetics of the lyophilized conduits. This can be modulated from a couple of weeks to several months by varying the concentration of hyaluronic acid in the starting solution. These findings allow to improve the performance of hyaluronan intended for neural conduits, and open the way to scaffolds with tunable degradation rate adapted to the site and severity of the injury. es_ES
dc.description.sponsorship The authors acknowledge Spanish Ministerio de Ciencia e Innovacion through projects PRI-PIMNEU-2011-1372 (ERANET-Neuron), MAT2011-28791-C03-02 and -03. I. Ortuno Lizaran acknowledges support by CIBER-BBN starting grant. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Biofabrication es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hyaluronan es_ES
dc.subject Scaffold es_ES
dc.subject Nerve conduit es_ES
dc.subject Schwann cell es_ES
dc.subject Degradability es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1758-5090/8/4/045011 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-03/ES/CONSTRUCTOS PARA LA REGENERACION GUIADA DE ESTRUCTURAS DEL SISTEMA NERVIOSO CENTRAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Ortuño-Lizarán, I.; Vilariño, G.; Martínez-Ramos, C.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication. 8(4):1-12. https://doi.org/10.1088/1758-5090/8/4/045011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1758-5090/8/4/045011 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\325385 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Devos, D., Moreau, C., Dujardin, K., Cabantchik, I., Defebvre, L., & Bordet, R. (2013). New Pharmacological Options for Treating Advanced Parkinson’s Disease. Clinical Therapeutics, 35(10), 1640-1652. doi:10.1016/j.clinthera.2013.08.011 es_ES
dc.description.references Speed, C. A. (2001). Therapeutic ultrasound in soft tissue lesions. Rheumatology, 40(12), 1331-1336. doi:10.1093/rheumatology/40.12.1331 es_ES
dc.description.references Jibuike, O. O. (2003). Management of soft tissue knee injuries in an accident and emergency department: the effect of the introduction of a physiotherapy practitioner. Emergency Medicine Journal, 20(1), 37-39. doi:10.1136/emj.20.1.37 es_ES
dc.description.references Berry, M. (1986). Neurogenesis and gliogenesis in the human brain. Food and Chemical Toxicology, 24(2), 79-89. doi:10.1016/0278-6915(86)90341-8 es_ES
dc.description.references Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. doi:10.1038/3305 es_ES
dc.description.references Murrell, W., Bushell, G. R., Livesey, J., McGrath, J., MacDonald, K. P. A., Bates, P. R., & Mackay-Sim, A. (1996). Neurogenesis in adult human. NeuroReport, 7(6), 1189-1194. doi:10.1097/00001756-199604260-00019 es_ES
dc.description.references Alvarez-Buylla, A., & Garcı́a-Verdugo, J. M. (2002). Neurogenesis in Adult Subventricular Zone. The Journal of Neuroscience, 22(3), 629-634. doi:10.1523/jneurosci.22-03-00629.2002 es_ES
dc.description.references Braak, H., & Del Tredici, K. (2008). Assessing fetal nerve cell grafts in Parkinson’s disease. Nature Medicine, 14(5), 483-485. doi:10.1038/nm0508-483 es_ES
dc.description.references Tennstaedt, A., Aswendt, M., Adamczak, J., Collienne, U., Selt, M., Schneider, G., … Hoehn, M. (2015). Human neural stem cell intracerebral grafts show spontaneous early neuronal differentiation after several weeks. Biomaterials, 44, 143-154. doi:10.1016/j.biomaterials.2014.12.038 es_ES
dc.description.references Papastefanaki, F., Chen, J., Lavdas, A. A., Thomaidou, D., Schachner, M., & Matsas, R. (2007). Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain, 130(8), 2159-2174. doi:10.1093/brain/awm155 es_ES
dc.description.references Fortun, J., Hill, C. E., & Bunge, M. B. (2009). Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neuroscience Letters, 456(3), 124-132. doi:10.1016/j.neulet.2008.08.092 es_ES
dc.description.references Grandhi, R., Ricks, C., Shin, S., & Becker, C. (2014). Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regeneration Research, 9(17), 1573. doi:10.4103/1673-5374.141778 es_ES
dc.description.references Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731 es_ES
dc.description.references Olson, H. E., Rooney, G. E., Gross, L., Nesbitt, J. J., Galvin, K. E., Knight, A., … Windebank, A. J. (2009). Neural Stem Cell– and Schwann Cell–Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord. Tissue Engineering Part A, 15(7), 1797-1805. doi:10.1089/ten.tea.2008.0364 es_ES
dc.description.references Sinis, N., Schaller, H.-E., Schulte-Eversum, C., Schlosshauer, B., Doser, M., Dietz, K., … Haerle, M. (2005). Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. Journal of Neurosurgery, 103(6), 1067-1076. doi:10.3171/jns.2005.103.6.1067 es_ES
dc.description.references Hudson, T. W., Evans, G. R. D., & Schmidt, C. E. (2000). ENGINEERING STRATEGIES FOR PERIPHERAL NERVE REPAIR. Orthopedic Clinics of North America, 31(3), 485-497. doi:10.1016/s0030-5898(05)70166-8 es_ES
dc.description.references Jansen, K., van der Werff, J. F. ., van Wachem, P. ., Nicolai, J.-P. ., de Leij, L. F. M. ., & van Luyn, M. J. . (2004). A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials, 25(3), 483-489. doi:10.1016/s0142-9612(03)00544-1 es_ES
dc.description.references Lam, J., Truong, N. F., & Segura, T. (2014). Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomaterialia, 10(4), 1571-1580. doi:10.1016/j.actbio.2013.07.025 es_ES
dc.description.references Lei, Y., Gojgini, S., Lam, J., & Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39-47. doi:10.1016/j.biomaterials.2010.08.103 es_ES
dc.description.references HARDINGHAM, T. (2004). Solution Properties of Hyaluronan. Chemistry and Biology of Hyaluronan, 1-19. doi:10.1016/b978-008044382-9/50032-7 es_ES
dc.description.references Day, A. J., & de la Motte, C. A. (2005). Hyaluronan cross-linking: a protective mechanism in inflammation? Trends in Immunology, 26(12), 637-643. doi:10.1016/j.it.2005.09.009 es_ES
dc.description.references Milner, C. M., Higman, V. A., & Day, A. J. (2006). TSG-6: a pluripotent inflammatory mediator? Biochemical Society Transactions, 34(3), 446-450. doi:10.1042/bst0340446 es_ES
dc.description.references West, D., Hampson, I., Arnold, F., & Kumar, S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science, 228(4705), 1324-1326. doi:10.1126/science.2408340 es_ES
dc.description.references L. Hallén, C. Johansson, C. Laurent. (1999). Cross-linked Hyaluronan (Hylan B Gel): a New Injectable Remedy for Treatment of Vocal Fold Insufficiency - an Animal Study. Acta Oto-Laryngologica, 119(1), 107-111. doi:10.1080/00016489950182043 es_ES
dc.description.references Collins, M. N., & Birkinshaw, C. (2007). Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 104(5), 3183-3191. doi:10.1002/app.25993 es_ES
dc.description.references Ibrahim, S., Kang, Q. K., & Ramamurthi, A. (2010). The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.32704 es_ES
dc.description.references Rnjak-Kovacina, J., Wray, L. S., Burke, K. A., Torregrosa, T., Golinski, J. M., Huang, W., & Kaplan, D. L. (2015). Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. ACS Biomaterials Science & Engineering, 1(4), 260-270. doi:10.1021/ab500149p es_ES
dc.description.references Yu, C., Bianco, J., Brown, C., Fuetterer, L., Watkins, J. F., Samani, A., & Flynn, L. E. (2013). Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 34(13), 3290-3302. doi:10.1016/j.biomaterials.2013.01.056 es_ES
dc.description.references Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040 es_ES
dc.description.references Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22(2), 158-161. doi:10.1136/jcp.22.2.158 es_ES
dc.description.references Fu, J. C., Hagemeir, C., Moyer, D. L., & Ng, E. W. (1976). A unified mathematical model for diffusion from drug-polymer composite tablets. Journal of Biomedical Materials Research, 10(5), 743-758. doi:10.1002/jbm.820100507 es_ES
dc.description.references Kim, J. K., Kim, H. J., Chung, J.-Y., Lee, J.-H., Young, S.-B., & Kim, Y.-H. (2013). Natural and synthetic biomaterials for controlled drug delivery. Archives of Pharmacal Research, 37(1), 60-68. doi:10.1007/s12272-013-0280-6 es_ES
dc.description.references Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering Part B: Reviews, 16(4), 371-383. doi:10.1089/ten.teb.2009.0639 es_ES
dc.description.references GRIBBON, P., HENG, B. C., & HARDINGHAM, T. E. (2000). The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain–chain association. Biochemical Journal, 350(1), 329-335. doi:10.1042/bj3500329 es_ES
dc.description.references Bitar, K. N., & Zakhem, E. (2014). Design Strategies of Biodegradable Scaffolds for Tissue Regeneration. Biomedical Engineering and Computational Biology, 6, BECB.S10961. doi:10.4137/becb.s10961 es_ES
dc.description.references Ojha, B., & Das, G. (2011). Role of hydrophobic and polar interactions for BSA–amphiphile composites. Chemistry and Physics of Lipids, 164(2), 144-150. doi:10.1016/j.chemphyslip.2010.12.004 es_ES
dc.description.references Martins, M., Azoia, N. G., Shimanovich, U., Matamá, T., Gomes, A. C., Silva, C., & Cavaco-Paulo, A. (2014). Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 11(5), 1479-1488. doi:10.1021/mp400657g es_ES
dc.description.references Chen, J.-P., Chen, S.-H., Chen, C.-H., & Shalumon, K. T. (2014). Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. International Journal of Nanomedicine, 4079. doi:10.2147/ijn.s67931 es_ES
dc.description.references Smit, X., van Neck, J. W., Afoke, A., & Hovius, S. E. R. (2004). Reduction of neural adhesions by biodegradable autocrosslinked hyaluronic acid gel after injury of peripheral nerves: an experimental study. Journal of Neurosurgery, 101(4), 648-652. doi:10.3171/jns.2004.101.4.0648 es_ES
dc.description.references Erturk, S., Yuceyar, S., Temiz, M., Ekci, B., Sakoglu, N., Balci, H., … Saner, H. (2003). Effects of Hyaluronic Acid-Carboxymethylcellulose Antiadhesion Barrier on Ischemic Colonic Anastomosis. Diseases of the Colon & Rectum, 46(4), 529-534. doi:10.1007/s10350-004-6594-1 es_ES
dc.description.references Godinho, M. J., Teh, L., Pollett, M. A., Goodman, D., Hodgetts, S. I., Sweetman, I., … Harvey, A. R. (2013). Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3. PLoS ONE, 8(8), e69987. doi:10.1371/journal.pone.0069987 es_ES
dc.description.references Nie, X., Deng, M., Yang, M., Liu, L., Zhang, Y., & Wen, X. (2013). Axonal Regeneration and Remyelination Evaluation of Chitosan/Gelatin-Based Nerve Guide Combined with Transforming Growth Factor-β1 and Schwann Cells. Cell Biochemistry and Biophysics, 68(1), 163-172. doi:10.1007/s12013-013-9683-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem