- -

Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity

Mostrar el registro completo del ítem

Trujillo Guillen, M.; Bon Corbín, J.; Berjano, E. (2017). Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity. International Journal of Hyperthermia. 33(6):624-634. doi:10.1080/02656736.2017.1303751

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99051

Ficheros en el ítem

Metadatos del ítem

Título: Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity
Autor: Trujillo Guillen, Macarena Bon Corbín, José Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Fecha de fin de embargo: 2018-03-21
Resumen:
[EN] Purpose: (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet ...[+]
Palabras clave: Computer modelling , Internally cooled electrode , Radiofrequency ablation , Electrical conductivity , Rehydration
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Hyperthermia. (issn: 0265-6736 )
DOI: 10.1080/02656736.2017.1303751
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/02656736.2017.1303751
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/
Agradecimientos:
This work was supported by the Government of Spain through the Spanish Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad under grant number TEC2014-52383-C3-R (TEC2014-52383-C3-1-R).[+]
Tipo: Artículo

References

Kohlhase, K. D., Korkusuz, Y., Gröner, D., Erbelding, C., Happel, C., Luboldt, W., & Grünwald, F. (2016). Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. International Journal of Hyperthermia, 32(5), 511-516. doi:10.3109/02656736.2016.1149234

Zhang, F., Wu, G., Sun, H., Ding, J., Xia, F., Li, X., … Bie, P. (2014). Radiofrequency ablation of hepatocellular carcinoma in elderly patients fitting the Milan criteria: A single centre with 13 years experience. International Journal of Hyperthermia, 30(7), 471-479. doi:10.3109/02656736.2014.961042

Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 [+]
Kohlhase, K. D., Korkusuz, Y., Gröner, D., Erbelding, C., Happel, C., Luboldt, W., & Grünwald, F. (2016). Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. International Journal of Hyperthermia, 32(5), 511-516. doi:10.3109/02656736.2016.1149234

Zhang, F., Wu, G., Sun, H., Ding, J., Xia, F., Li, X., … Bie, P. (2014). Radiofrequency ablation of hepatocellular carcinoma in elderly patients fitting the Milan criteria: A single centre with 13 years experience. International Journal of Hyperthermia, 30(7), 471-479. doi:10.3109/02656736.2014.961042

Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076

McGahan, J. P., & Dodd, G. D. (2001). Radiofrequency Ablation of the Liver. American Journal of Roentgenology, 176(1), 3-16. doi:10.2214/ajr.176.1.1760003

Burdío, F., Tobajas, P., Quesada-Diez, R., Berjano, E., Navarro, A., Poves, I., & Grande, L. (2011). Distant Infusion of Saline May Enlarge Coagulation Volume During Radiofrequency Ablation of Liver Tissue Using Cool-tip Electrodes Without Impairing Predictability. American Journal of Roentgenology, 196(6), W837-W843. doi:10.2214/ajr.10.5202

Burdío, F., Güemes, A., Burdío, J. M., Navarro, A., Sousa, R., Castiella, T., … Lozano, R. (2003). Bipolar Saline-enhanced Electrode for Radiofrequency Ablation: Results of Experimental Study of in Vivo Porcine Liver. Radiology, 229(2), 447-456. doi:10.1148/radiol.2292020978

Lee, J. M., Han, J. K., Kim, S. H., Sohn, K. L., Lee, K. H., Ah, S. K., & Choi, B. I. (2003). A Comparative Experimental Study of the In-vitro Efficiency of Hypertonic Saline-Enhanced Hepatic Bipolar and Monopolar Radiofrequency Ablation. Korean Journal of Radiology, 4(3), 163. doi:10.3348/kjr.2003.4.3.163

Goldberg, S. N., Ahmed, M., Gazelle, G. S., Kruskal, J. B., Huertas, J. C., Halpern, E. F., … Lenkinski, R. E. (2001). Radio-Frequency Thermal Ablation with NaCl Solution Injection: Effect of Electrical Conductivity on Tissue Heating and Coagulation—Phantom and Porcine Liver Study. Radiology, 219(1), 157-165. doi:10.1148/radiology.219.1.r01ap27157

Lobo, S. M., Afzal, K. S., Ahmed, M., Kruskal, J. B., Lenkinski, R. E., & Goldberg, S. N. (2004). Radiofrequency Ablation: Modeling the Enhanced Temperature Response to Adjuvant NaCl Pretreatment. Radiology, 230(1), 175-182. doi:10.1148/radiol.2301021512

Mulier, S., Miao, Y., Mulier, P., Dupas, B., Pereira, P., de Baere, T., … Ni, Y. (2005). Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. European Radiology, 15(4), 798-808. doi:10.1007/s00330-004-2584-x

Hyoung Kim, J., Nyun Kim, P., Jin Won, H., & Moon Shin, Y. (2013). Percutaneous Radiofrequency Ablation with Internally Cooled versus Internally Cooled Wet Electrodes for Small Subphrenic Hepatocellular Carcinomas. Journal of Vascular and Interventional Radiology, 24(3), 351-356. doi:10.1016/j.jvir.2012.11.025

Cha, J., Choi, D., Lee, M. W., Rhim, H., Kim, Y., Lim, H. K., … Park, C. K. (2009). Radiofrequency Ablation Zones in Ex Vivo Bovine and In Vivo Porcine Livers: Comparison of the Use of Internally Cooled Electrodes and Internally Cooled Wet Electrodes. CardioVascular and Interventional Radiology, 32(6), 1235-1240. doi:10.1007/s00270-009-9600-0

Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020

Park, M.-H., Cho, J.-S., Shin, B. S., Jeon, G. S., Lee, B., & Lee, K. (2012). Comparison of Internally Cooled Wet Electrode and Hepatic Vascular Inflow Occlusion Method for Hepatic Radiofrequency Ablation. Gut and Liver, 6(4), 471-475. doi:10.5009/gnl.2012.6.4.471

Han, J. K., Lee, J. M., Kim, S. H., Lee, J. Y., Park, H. S., Eo, H., & Choi, B. I. (2005). Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode. European Radiology, 15(10), 2163-2170. doi:10.1007/s00330-005-2713-1

Romero-Méndez, R., Tobajas, P., Burdío, F., Gonzalez, A., Navarro, A., Grande, L., & Berjano, E. (2012). Electrical-thermal performance of a cooled RF applicator for hepatic ablation with additional distant infusion of hypertonic saline:In vivostudy and preliminary computer modeling. International Journal of Hyperthermia, 28(7), 653-662. doi:10.3109/02656736.2012.711894

Kim, J. H., Kim, P. N., Won, H. J., & Shin, Y. M. (2012). Percutaneous Radiofrequency Ablation Using Internally Cooled Wet Electrodes for the Treatment of Hepatocellular Carcinoma. American Journal of Roentgenology, 198(2), 471-476. doi:10.2214/ajr.11.6583

Kim, J. W., Kim, J. H., Shin, Y. M., Won, H. J., & Kim, P. N. (2014). Percutaneous radiofrequency ablation with internally cooled wet electrodes versus cluster electrodes for the treatment of single medium-sized hepatocellular carcinoma. Gastrointestinal Intervention, 3(2), 98-103. doi:10.1016/j.gii.2014.09.008

Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Demazumder, D., Mirotznik, M. S., & Schwartzman, D. (2001). Journal of Interventional Cardiac Electrophysiology, 5(4), 377-389. doi:10.1023/a:1013224110550

Antunes, C. L., Almeida, T. R. O., & Raposeiro, N. (2012). Saline‐enhanced RF ablation on a cholangiocarcinoma: a numerical simulation. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 31(4), 1055-1066. doi:10.1108/03321641211227302

Pätz T, Kröger T, Preusser T. (2009). Simulation of radiofrequency ablation including water evaporation. IFMBE Proceedings, 25/IV:1287–90.

Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03

McGahan, J. P., Loh, S., Boschini, F. J., Paoli, E. E., Brock, J. M., Monsky, W. L., & Li, C.-S. (2010). Maximizing Parameters for Tissue Ablation by Using an Internally Cooled Electrode. Radiology, 256(2), 397-405. doi:10.1148/radiol.09090662

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754

Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370

Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317

Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3

Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740

Baxter, L. T., & Jain, R. K. (1989). Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvascular Research, 37(1), 77-104. doi:10.1016/0026-2862(89)90074-5

Burdío, F., Berjano, E., Millan, O., Grande, L., Poves, I., Silva, C., … Mojal, S. (2013). CT mapping of saline distribution after infusion of saline into the liver in an ex vivo animal model. How much tissue is actually infused in an image-guided procedure? Physica Medica, 29(2), 188-195. doi:10.1016/j.ejmp.2012.03.001

Uthamanthil, R. K., Edwards, R. B., Lu, Y., Manley, P. A., Athanasiou, K. A., & Markel, M. D. (2006). In vivo study on the short-term effect of radiofrequency energy on chondromalacic patellar cartilage and its correlation with calcified cartilage pathology in an equine model. Journal of Orthopaedic Research, 24(4), 716-724. doi:10.1002/jor.20108

Nour SG, Lewin JS, Duerk JL. (2001). Saline injection in ex-vivo liver: monitoring with fast gradient echo sequences At 0.2 T, Glasgow, Scotland. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) 9th Scientific Meeting.

Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388

Myong-Ki Jun KD. (2006). Electrode for radiofrequency tissue ablation. US Patent US 2006/0122593, June 8, 2006.

Lee, J. M., Han, J. K., Kim, S. H., Han, C. J., An, S. K., Lee, J. Y., & Choi, B. I. (2005). Wet radio-frequency ablation using multiple electrodes: comparative study of bipolar versus monopolar modes in the bovine liver. European Journal of Radiology, 54(3), 408-417. doi:10.1016/j.ejrad.2004.06.004

Lee, J. M., Han, J. K., Kim, S. H., Lee, J. Y., Kim, D. J., Lee, M. W., … Choi, B. I. (2004). Saline-Enhanced Hepatic Radiofrequency Ablation Using a Perfused-Cooled Electrode: Comparison of Dual Probe Bipolar Mode with Monopolar and Single Probe Bipolar Modes. Korean Journal of Radiology, 5(2), 121. doi:10.3348/kjr.2004.5.2.121

Ishikawa, T. (2013). Radiofrequency ablation during continuous saline infusion can extend ablation margins. World Journal of Gastroenterology, 19(8), 1278. doi:10.3748/wjg.v19.i8.1278

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem