- -

Bacillus subtilis IAB/BS03 as a potential biological control agent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bacillus subtilis IAB/BS03 as a potential biological control agent

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hinarejos, Estefania es_ES
dc.contributor.author Castellano Pérez, Mayte es_ES
dc.contributor.author Rodrigo Bravo, Ismael es_ES
dc.contributor.author Belles Albert, José Mª es_ES
dc.contributor.author Conejero Tomás, Vicente es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author Lisón, Purificación es_ES
dc.date.accessioned 2018-03-23T05:03:22Z
dc.date.available 2018-03-23T05:03:22Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0929-1873 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99602
dc.description.abstract [EN] We describe the efficacy of Bacillus subtilis strain IAB/BS03 in reducing disease incidence of B. subtilis IAB/BS03 as a foliar treatment against Botrytis cinerea and Pseudomonas syringae on greenhouse-grown tomato (Solanum lycopersicon) plants. We also tested the effect of foliar treatments on lettuce (Lactuca sativa) against lettuce downy mildew caused by Bremia lactucae in multiple trials under different field conditions. All the assays indicated that B. subtilis IAB/BS03 reduced disease. To ascertain the mechanism of action, the induction of pathogenesis-related (PR) proteins, the accumulation of salicylic acid and the activation of peroxidase caused by foliar or root treatments with B. subtilis IAB/BS03 were studied in tomato. A salicylic acid-independent induction of the antifungal protein PR1 was observed after treatment with B. subtilis IAB/BS03, with the strongest induction due to root treatment compared with foliar application. A metabolic analysis of B. subtilis IAB/BS03 culture broth using Ultra Performance Liquid Chromatography coupled with ultraviolet and mass spectrometric detection determined surfactin and iturin A isomers. These compounds have been described as antifungal and antibiotic lipopeptides. The results indicated that B. subtilis IAB/BS03 could be effectively used as a biocontrol agent. es_ES
dc.description.sponsorship This work was funded by IAB S. L. (Investigaciones y Aplicaciones Biotecnologicas, S. L.), and by grant BIO2012-33419 from the Spanish Ministry of Economy and Competitiveness. Mayte Castellano was the recipient of a research grant also funded by IAB S. L. The authors would like to thank Cristina Torres (IBMCP, UPV-CSIC) for her excellent technical assistance. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof European Journal of Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bacillus subtilis es_ES
dc.subject Biological control es_ES
dc.subject Iturin es_ES
dc.subject Surfactin es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Bacillus subtilis IAB/BS03 as a potential biological control agent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10658-016-0945-3 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2012-33419/ES/CARACTERIZACION DE GENES Y METABOLITOS IMPLICADOS EN LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Hinarejos, E.; Castellano Pérez, M.; Rodrigo Bravo, I.; Belles Albert, JM.; Conejero Tomás, V.; López-Gresa, MP.; Lisón, P. (2016). Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology. 146(3):597-608. https://doi.org/10.1007/s10658-016-0945-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10658-016-0945-3 es_ES
dc.description.upvformatpinicio 597 es_ES
dc.description.upvformatpfin 608 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\323695 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal Economic Entomology, 18, 265–267. es_ES
dc.description.references Chen, H., Wang, L., Su, C.X., Gong, G. H., Wang, P., Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology. 47, 180–186. es_ES
dc.description.references Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin a from Bacillus subtilis strain KS03. FEMS Microbiology Letters, 223, 47–51. es_ES
dc.description.references Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiology Research, 164, 493–513. es_ES
dc.description.references Coego, A., Ramírez, V., Ellul, P., Mayda, E., & Vera, P. (2005). The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 42, 283–293. es_ES
dc.description.references Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7, 210–216. es_ES
dc.description.references Fleming, A. J., Mandel, T., Roth, I., & Kuhlemier, C. (1993). The patterns of gene expression in the tomato shoot apical meristem. The Plant Cell, 5, 297–309. es_ES
dc.description.references Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359. es_ES
dc.description.references Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73–76. es_ES
dc.description.references Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y., & Suzuki, S. (2015). Cyclic lipopeptide iturin a structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical and Biophysical Research Communications, 460, 1015–1020. es_ES
dc.description.references Kloepper, J. W., Ryu, C. M., & Zhang, S. A. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266. es_ES
dc.description.references Liu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology, 139, 107–116. es_ES
dc.description.references Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162, 491–498. es_ES
dc.description.references Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., et al. (1995). Pathogenesis-related PR-1 proteins are antifungal - isolation and characterization of 3 14-Kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108, 17–27. es_ES
dc.description.references Ohno, A., Ano, T., & Shoda, M. (1995). Effect of temperature on production of lipopeptide antibiotics, iturin a and surfactin by a dual producer, Bacillus subtilis Rb14, in solid-state fermentation. Journal of Fermentation and Bioengineering, 80, 517–519. es_ES
dc.description.references Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125. es_ES
dc.description.references Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193. es_ES
dc.description.references Phister, T. G., O’Sullivan, D. J., & McKay, L. L. (2004). Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp strain CS93 isolated from pozol, a Mexican fermented maize dough. Applied Environmental Microbiology, 70, 631–634. es_ES
dc.description.references Pieterse, C. M. J., vanWees, S. C. M., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell, 8, 1225–1237. es_ES
dc.description.references Pryor, S. W., Gibson, D. M., Krasnoff, S. B., & Walker, L. P. (2006). Identification of antifungal compounds in a biological control product using a microplate inhibition bioassay. Transactions of the ASAE, 49, 1643–1649. es_ES
dc.description.references Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379. es_ES
dc.description.references Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paul W, P., et al. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology, 3, 130–138. es_ES
dc.description.references Summermatter, K., Sticher, L., & Métraux, J. P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology, 108, 1379–1385. es_ES
dc.description.references Tang, J. S., Zhao, F., Gao, H., Dai, Y., Yao, Z. H., Hong, K., et al. (2010). Characterization and online detection of surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS induced macrophages. Marine Drugs, 8, 2605–2618. es_ES
dc.description.references Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Molecular Plant-Microbe Interactions, 10, 624–634. es_ES
dc.description.references Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology, 42, 117–126. es_ES
dc.description.references Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254. es_ES
dc.description.references Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 895–908. es_ES
dc.description.references Wulff, B. B. H., Horvath, D. M., & Ward, E. R. (2011). Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology, 14, 468–476. es_ES
dc.description.references Yáñez-Mendizábal, V., Zeriouh, H., Viñas, I., Torres, R., Usall, J., de Vicente, A., et al. (2012). Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 132, 609–619. es_ES
dc.description.references Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 20, 1439–1448. es_ES
dc.description.references Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421. es_ES
dc.description.references Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem