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Abstract

It was not that long ago, just in the �rst half on the 1990s, when mobile phones
were �rst introduced, being big and expensive. All you could do with them
was to make phone calls. Since then mobile devices have experienced a great
technological advance: we carry smartphones in our pockets that provide Inter-
net access, having accelerometers that can measure acceleration, a gyroscope
that can provide orientation information, di�erent wireless interfaces such as
Bluetooth connections, and above all, great computing power.

On the other hand, the automobile industry has evolved signi�cantly during
the last 10 years. One of the most exciting advances in vehicle development is
vehicle-to-vehicle V2V communication, which allows cars to communicate with
each other over a dedicated Wi-Fi band, and share information about vehicle
speed, route direction, tra�c �ow, and road and weather conditions. An exam-
ple of such a system is GM's (General Motors) OnStar, introduced in 1996, and
that provides automatic response in case of an accident, stolen-vehicle recov-
ery, remote door unlock, and vehicle diagnostics. Also, the standard On Board
Diagnosis (OBD-II), available for several years, allows us to connect to the
Electronic Control Unit (ECU) via a Bluetooth OBD-II connector. This con-
nection interface allows connectivity between the smartphone and the vehicle,
and can be purchased for just over 15 euros.

The spectrum of possibilities that arise when combining the car and the smart-
phone is unlimited, such as performing the diagnosis of the car by assuming
the tasks performed by the car's On Board Unit (OBU), or sending the col-
lected data to a platform where the diagnosis or maintenance of the system
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can be realized in order to detect possible faults, help you to save gas and
reduce environment pollution, and notify you of your car's problems, among
other features.

The general objective pursued with this doctoral thesis is to help drivers to
correct bad habits in their driving. To achieve this we promote the combination
between smartphones and vehicular networks to design and develop a platform
able to o�er useful tips to achieve safer driving and greater fuel economy. It
is well-known that intelligent driving can lead to lower fuel consumption, with
the consequent positive impact on the environment.

The proposal that has been carried out in this doctoral thesis begins with
the data capture from the vehicles' OBD-II port and data analysis through
the use of graphs, maps, and statistics, both, on the server itself and in the
smartphone's application developed. We applied data mining techniques and
neural networks to analyze, study and generate a classi�cation on driving
styles based on the analysis of the characteristics of each speci�c route used
for testing.

In a second phase, we demostrate the relationship between fuel consumption
and driving style. To achieve that goal, the �rst thing that we had to realize
was how to apply di�erent algorithms for the instantaneous consumption cal-
culation (this parameter cannot be obtained directly from the vehicle ECU).
Later, we studied and analyzed all data that was collected from the drivers
who shared their monitored data with the server.

Although drivers do not recognize themselves as being in a state of anxiety
while driving, they are more stressed than in any other daily activity, for
example, when trying to stay in the right lane, keeping the car at a certain
speed, and starting and stopping the vehicle. In general, drivers are more
concentrated than they think, which causes an increase in the heart rate.

Many factors in�uence heart rate while at rest, e.g. stress, medications, medical
conditions, even genes play a role. In our study we also investigate how stress
and the driving behavior in�uence the heart rate. So, in the last phase, we
demostrate the correlation between heart rate and driving style, showing how
the driving style can make the heart rate vary by 3 %.
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Resumen

No hace mucho tiempo, tan sólo en la primera mitad en la década de los 90,
cuando los teléfonos móviles aparecieron, eran grandes y caros, todo lo que
se podía hacer con ellos era realizar llamadas telefónicas. Desde entonces los
dispositivos móviles han experimentado un gran avance tecnológico, llevamos
teléfonos inteligentes en el bolsillo con acceso a Internet, acelerómetros que
calculan la aceleración instantánea, giroscopios que proporcionan información
de orientación, diferentes conexiones inalámbricas como Bluetooth, y sobre
todo, gran capacidad de computación.

Por otro lado, la industria del automóvil ha evolucionado mucho durante los
últimos 10 años. Uno de los avances más interesantes en el desarrollo de vehícu-
los ha sido la conectividad, V2V, o comunicación vehículo a vehículo, permite
a los automóviles comunicarse mediante Wi-Fi y compartir información sobre
la velocidad del vehículo, la dirección de la ruta actual, el trá�co, así como
las condiciones de la carretera y las condiciones ambientales. Por ejemplo, el
sistema OnStar de GM (General Motors) fue introducido en 1996, el sistema
tiene aviso en caso de accidente, recuperación de vehículo robado, desbloqueo
remoto de la puerta, diagnóstico de vehículos, etc. Por otra parte, el están-
dar On Board Diagnosis (OBD-II), disponible desde hace varios años, permite
conectarnos de forma sencilla a la ECU (Electronic Control Unit) mediante un
conector Bluetooth OBD-II. Este interfaz de conexión permite la conectividad
entre el dispositivo móvil y el vehículo, se puede adquirir por poco más de 15
euros.
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El espectro de posibilidades que surgen al combinar el automóvil y el smart-
phone es amplísimo, como por ejemplo realizar el diagnóstico del coche a través
del móvil asumiendo las tareas que hace la unidad On Board Unit (OBU) del
coche, o bien enviar los datos recogidos a una plataforma donde se pueda re-
alizar el diagnóstico o mantenimiento del sistema, detectando posibles fallos
puede ayudar a ahorrar en el consumo de combustible, noti�car los problemas
del coche en tiempo real, entre otras características.

El objetivo general que se persigue con esta tesis doctoral es ayudar al con-
ductor a corregir malos hábitos en su forma de conducción. Conseguimos esto
mediante la combinación entre smartphones y las redes vehiculares, diseñamos
y desarrollamos una plataforma capaz de ofrecer consejos útiles para conseguir
una conducción más segura y un mayor ahorro de combustible. Es conocido
que una conducción inteligente puede llevarnos a un menor consumo de com-
bustible, con el consiguiente impacto positivo que ello conlleva sobre el medio
ambiente.

La propuesta que se ha llevado a cabo en esta tesis doctoral comienza con la
obtención de los datos desde el OBD-II del coche y su presentación y análisis
mediante el uso de grá�cas, mapas, estadísticas, tanto en el propio servidor
como en la aplicación móvil desarrollada para la obtención de datos recibidos
desde la ECU. Se aplicaron técnicas de minería de datos y redes neuronales para
analizar, estudiar y generar una clasi�cación sobre los estilos de conducción en
base al análisis de las características de la vía sobre la que ha realizado la ruta.

En una segunda fase se demostró la relación entre el consumo de combustible
con el estilo de conducción, para ello lo primero que tuvimos que realizar
fue aplicar diversos algoritmos para el cálculo del consumo instantáneo, este
parámetro no es posible obtenerlo directamente de la ECU del vehículo. Poste-
riormente se realizó el estudio y el análisis de todos los datos que se recogieron
de los conductores que se prestaron a la realización del estudio enviando los
datos al servidor.

Aunque los conductores no se reconozcan estar en estado de ansiedad, al con-
ducir sé está más alerta que en cualquier otra actividad diaria, por ejemplo,
intentando permanecer en el carril de la derecha, manteniendo el coche a una
cierta velocidad determinada, arrancando y deteniendo el vehículo. En gen-
eral, los conductores están más concentrados que lo que ellos piensan, lo que
generan un aumento del ritmo cardíaco.

Muchos factores in�uyen en la frecuencia cardíaca en reposo, por ejemplo, el
estrés, los medicamentos, las condiciones médicas, incluso los genes tienen su
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in�uencia, el envejecimiento tiende a acelerarlo, y el ejercicio regular tiende
a ralentizarlo. En nuestro estudio también investigamos cómo el estrés y el
comportamiento en la conducción in�uyen en la frecuencia cardíaca. En la
última fase vemos la correlación existente entre el ritmo cardíaco y el estilo de
conducción, demostramos como el estilo de conducción puede llegar a modi�car
el ritmo cardíaco hasta en un 3 %.
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Resum

No fa molt de temps, tan sols en la primera mitat en la dècada dels 90, quan els
telèfons mòbils van aparéixer, eren grans i cars, tot el que es podia fer amb ells
era realitzar telefonades. Des de llavors els dispositius mòbils han experimentat
un gran avanç tecnològic, portem telèfons intel·ligents en la butxaca amb ac-
cés a Internet, acceleròmetres que calculen l'acceleració instantània, giroscopis
que proporcionen informació d'orientació, diferents connexions sense �ls com
Bluetooth, i sobretot gran capacitat de computació.

D'altra banda, la indústria de l'automòbil ha evolucionat molt durant els últims
10 anys. Un dels avanços més interessants en el desenrotllament de vehicles
ha sigut la connectivitat, V2V, o comunicació vehicle a vehicle, permet als
automòbils comunicar-se per mitjà de la banda de Wi-Fi i compartir informació
sobre la velocitat del vehicle, la direcció de la ruta actual, les condicions del
trà�c, així com l'estat de la carretera i les condicions ambientals. Per exemple,
el sistema OnStar de GM (General Motors) va ser introduït en 1996, el sistema
té avís en cas d'accident, recuperació de vehicle robat, desbloqueig remot de
la porta, diagnòstic de vehicles, etc. D'altra banda l'estàndard On Board
Diagnosi (OBD-II), disponible des de fa diversos anys, permet connectar-nos
de forma senzilla a l'ECU (Electronic Control Unit) per mitjà d'un connector
Bluetooth OBD-II. Esta interfície de connexió permet la connectivitat entre el
dispositiu mòbil i el vehicle, es pot adquirir per poc més de 15 euros.

L'espectre de possibilitats que sorgixen al combinar l'automòbil i el smartphone
és il·limitat, com per exemple realitzar el diagnòstic del cotxe a través del mòbil
assumint les tasques que fa la unitat On Board Unit (OBU) del cotxe, o bé
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enviar les dades arreplegades a una plataforma on es puga realitzar el diagnòstic
o manteniment del sistema, detectant possibles fallades, ajuda a estalviar en el
consum de combustible, noti�car els problemes del cotxe en temps real, entre
altres característiques.

L'objectiu general que es perseguix amb esta tesi doctoral és ajudar al con-
ductor a corregir mals hàbits en la seua forma de conducció. Aconseguim
açò mitjançant de la combinació entre smartphones i les xarxes vehiculares,
dissenyem i desenrotllem una plataforma capaç d'oferir consells útils per a
aconseguir una conducció més segura i un major estalvi de combustible. És
conegut que una conducció intel·ligent pot emportar-nos a un menor consum
de combustible, amb el consegüent impacte positiu que això comporta sobre el
medi ambient.

La proposta que s'ha dut a terme en esta tesi doctoral comença amb l'obtenció
de les dades des de l'OBD-II del cotxe i la seua presentació i anàlisi per mitjà
de l'ús de grà�ques, mapes, estadístiques, tant en el propi servidor, com en
l'aplicació mòbil desenrotllada per a l'obtenció de dades rebudes des de l'ECU.
S'apliquen tècniques de mineria de dades i xarxes neuronals per a analitzar,
estudiar i generar una classi�cació sobre els estils de conducció basant-se en
l'anàlisi de les característiques de la via sobre la qual ha realitzat la ruta.

En una segona fase es va a demostrar la relació entre el consum de combustible
amb l'estil de conducció, per a això la primera cosa que vam haver de real-
itzar va ser aplicar diversos algorismes per al càlcul del consum instantani,
este paràmetre no és possible obtindre-ho directament de l'ECU del vehicle.
Posteriorment es va realitzar l'estudi i l'anàlisi de totes les dades que es van
arreplegar dels conductors que es van prestar a la realització de l'estudi enviant
les dades al servidor.

Encara que els conductors no es reconeguen estar en estat d'ansietat, al conduir
s'està més alerta que en qualsevol altra activitat diària, per exemple, intentant
romandre en el carril de la dreta, mantenint el cotxe a una certa velocitat
determinada, arrancant i detenint el vehicle. En general, els conductors estan
més concentrats que el que ells pensen, la qual cosa generen un augment del
ritme cardíac.

Molts factors in�ueixen en la freqüència cardíaca en repòs, per exemple, l'estrès,
els medicaments, les condicions mèdiques, �ns i tot els gens tenen la seua
in�uència, l'envelliment tendeix a accelerar-ho, i l'exercici regular tendeix a
ralentir-ho. En el nostre estudi només estem interessats en com l'estrès i el
comportament en la conducció in�ueixen en la freqüència cardíaca. En l'última
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fase vam veure la correlació existent entre el ritme cardíac i l'estil de conduc-
ció, i vam demostrar com l'estil de conducció pot arribar a modi�car el ritme
cardíac un 3 %.
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Chapter 1

Introduction

1.1 Motivation

Driving is a complex activity that requires a skilled behavior at di�erent levels.
Factors contributing to road tra�c crashes generally fall into three categories:
environmental, vehicle, and human, with the human factor being by far the
most determinant. Obtaining an in-depth exploration of driving behavior and
factors underpinning risky driving could therefore be useful to facilitate the
establishment of e�ective policies to mitigate them.

In emergency situations our automatic reactions may not be appropriate, and
shifting our behavior to more consciously control such rare events is unlikely
to succeed because we do not have e�ective emergency training at our dis-
posal. Behavior will re�ect the psychological pro�le of each individual, and
the situations the individual is exposed to.

Behavior may be aggressive, passive, distracted, alert, ignorant, con�dent,
timid, skilled, arrogant, tolerant, angry or fall under many other descriptions.
Of all the possible behaviors, we are only concerned with those behaviors that
may be dangerous to driving. In particular, our study will only deal with three
of these possible behaviors, and we will classify them as aggressive, normal and
quiet.
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Chapter 1. Introduction

Much of our driving behavior is automatic, developed from experiences and our
perception of driving situations, typically requiring minimal attention. Behav-
ior can change as a result of learning, provided we take up new strategies and
practice them until they become new behaviors. Thus, it becomes necessary
to develop an architecture that helps drivers notice their own behavior while
driving, and help them to change it in case that this behavior is dangerous.

1.2 Objectives and Methodology

The main objective of this thesis is the creation and development of an archi-
tecture for monitoring drivers. We analyze the driving behavior, and how this
behavior a�ects fuel consumption and heart rate, through the use of neural
networks and data mining.

In this thesis we adopted a mostly pragmatic approach. First, we reviewed
the state of the art in order to �nd the most relevant contributions in the
area of knowledge associated to driving behavior. At �rst, there was not much
literature in the �eld due to the novelty of the subject. More recently, we have
seen a great interest in the research topics addressed in this thesis.

Second, and contrarily to other previous studies, we focused our e�orts on the
implementation of a new and complete architecture in real time in which we
analyze thousands of data sent by drivers. Thanks to this architecture, and
its implementation in real systems, we were able to obtain information about
the car and the driver, which have allowed us to perform the di�erent studies
about behavior, and how it a�ects consumption and heart rate.

As the third and �nal point of this thesis, we performed the analysis of data
mining on the detection of the driving behavior, and route type, as well as how
driving behavior a�ects fuel consumption and the driver's heart rate.

In order to address this general objective, it is decomposed into several prob-
lems that will be tackled and developed in this thesis:

1. Development of an interface capable of interacting with the vehicle from
the smartphone.

2. Training, setting, and creation of a Neural Network capable of determin-
ing the type of route and the driving style.

3. Creation of an application for the Android system able to monitor the
driving style, the driver, and the vehicle in real time.
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4. Creation of a Data Center, able to receive, store, and process large
amounts of data to �nd out the individual driving style.

5. Development of a module capable of estimating the vehicle's consumption
in order to study the correlation between the driving style and consump-
tion.

6. Development of a module capable of integrating heart rate sensors in the
developed application to allow studying the correlation between driving
style and heart rate.

1.3 Organization of the thesis

This thesis is presented as a compilation of articles (adapted to the required
format), and so, the rest of the thesis is organized as follows:

Chapter 2 provides an overview of the basic concepts and technologies used in
the thesis. In Chapter 3 we present the Neural Networks developed and the
proposed DrivingStyles architecture. Chapters 4 and 5 include a discussion of
the results obtained regarding the correlation between fuel consumption and
driving style. Chapters 6 and 7 include the di�erents relevant publications in
terms of the correlation between the driving behavior and heart rate changes.
In Chapter 8 we make a summary of the milestones reached in the thesis.
Finally, Chapter 9 presents the conclusions of this work, as well as ideas for
future work. It also includes a summary of the di�erent publications presented
in this thesis.

3





Chapter 2

Background

The central chapters of this thesis are academic papers that have been pub-
lished in di�erent journals and international conferences. So, each of them
already includes a part dedicated to revise the state of the art in the partic-
ular problem addressed by the paper. Nevertheless, we are including here a
summary of the main technological topics associated to the thesis in order to
help the reader to di�erentiate each of the topics that have been tackled.

2.1 Overview of the OBD-II standard

OBD-II1 [1] is the abbreviation of On Board Diagnostics II, the second gener-
ation of the regulation that required all cars to have this type of device. The
�rst generation was OBD-I2, and a tightening of emission limits in 1996 led
to the creation of the OBD-II. This system incorporates two oxygen sensors
(Lambda probe), one located before the catalyst and another one after it, thus
being able to verify its correct operation. If a problem or fault is detected,
the OBD-II system lights a warning lamp on the dashboard called MIL (Mal-
function Indicator Lamp) that warns the driver of a fault. The warning lamp
usually carries the inscription �Check Engine� or �Service Engine Soon�. The

1http://www.obdii.com/
2https://law.resource.org/pub/us/cfr/ibr/005/sae.j1979.2002.pdf
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system also keeps important information about the detected faults so that a
mechanic can �nd and solve the problem. In the United States, all gasoline
vehicles since 1996 must have OBD-II systems, similarly to all passenger cars
and diesel trucks since 1997. In Europe, according to the directive 98/69EG
[2], gasoline cars from the year 2000 onwards, diesel cars from 2003, and trucks
since 2005 have to support OBD-II. In more detail:

1. OBD-I: Designed to detect electrical faults in the system and components.
The so-called MIL (Malfunction Indicator Lamp) light turns o� if the
emissions problem is corrected by itself. It stays on until 3 consecutive
driving cycles have passed, without the problem recurring. The memory
is cleared after 40 cold starts. However, in the case of the fuel scan, 80
cold starts are required.

2. OBD-II: The standard speci�es the type of diagnostic connector and its
pin-out (see Table 2.1 ), the electrical signaling protocols and the messag-
ing format. It monitors the emission systems behavior and components,
as well as electrical faults, and stores information for later use. The
OBD-II standard implements various working modes. This means that,
depending on the information to be accessed, a di�erent mode is needed.
Once inside this mode of work, an extensive number of parameters is
o�ered to access this information (see Table 2.2).

Table 2.1: Standard OBD-II pin lay-out

Pin Description Pin Description

Pin 1 V endorOption Pin 9 V endorOption
Pin 2 SAEJ1850Bus+ [3] Pin 10 J1850Bus[3]
Pin 3 V endorOption Pin 11 V endor Option
Pin 4 Chassis Ground Pin 12 V endor Option
Pin 5 Signal Ground Pin 13 V endor Option
Pin 6 CAN High (J − 2284) Pin 14 CAN Low (J − 2284)
Pin 7 ISO9141−2KLine [4] Pin 15 ISO 9141− 2 Low [4]
Pin 8 V endor Option Pin 16 Battery Power
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Table 2.2: OBD-II Standard working modes.

Mode (hex) Description

Mode 01 Show current data
Mode 02 Show freeze frame data
Mode 03 Show stored Diagnostic Trouble Codes
Mode 04 Clear Diagnostic Trouble Codes and stored values
Mode 05 Test results, oxygen sensormonitoring (nonCAN only)

Mode 06
Test results, other component/systemmonitoring
(Test results, oxygen sensor monitoring for CAN only)

Mode 07
Show pending Diagnostic Trouble Codes
(detected duringcurrent or last driving cycle)

Mode 08 Control operation of onboard component/system
Mode 09 Request vehicle information

Mode 0A
Permanent Diagnostic Trouble Codes (DTCs)
(Cleared DTCs)

2.1.1 OBD-II Hardware and Protocols

OBD-II de�nes a 16-pin standard hardware interface (female J1962 connector
[5]), see Table 2.1 and Figure 2.1 for more details. The connector complies
with ISO 15031-3: 2004 [6], which even speci�es where the connector should
be located, although it is usually found in any position, always under the
dashboard.

The OBD-II o�ers �ve di�erent protocols, although most vehicles implement
only one of these protocols. All OBD-II connection pins use the same con-
nector, but according to the protocol they di�er in which pins, except pin 4
(Battery negative) and pin 16 (Battery positive) [6].

Figure 2.1: 16 pin J1962 OBD-II car proprietary connector.
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Table 2.3: OBD-II standard protocols.

Mode Description

SAE J1850 PWM [3] Pulse Width Modulation, used by Ford USA.
SAE J1850 VPW [3] V ariable Pulse Width, used by GM USA

ISO 9141-2 [4]
In European, Asian, and Chrysler vehicles
with variants.

ISO 14230 KWP200 [7] Keyword Protocol 2000 used by the V AG group.
ISO 15765 CAN [8] ISO9141− 2KLine

In general, European products, many Asian manufacturers and Chrysler adopt
the ISO 9141 [4] protocol. General Motors uses SAE J1850 VPW, and Ford
adopts the SAE J1850 PWM communication standards [3].

2.1.2 ELM327 Bluetooth

The ELM327 [9�11] is originally an 18F2480 PIC3 (Peripheral Interface Con-
troller), and is programmed by ELM Electronics [12]. It acts as an interface
between RS232 and OBDII for systems that use the ISO 15765-4 CAN, SAE
J1850 PWM, SAE J1850 VPW, ISO 9141-2, ISO 14230-4, and SAE J1939
protocols, which are adopted by di�erent vehicle models. However, PICs are
in general a family of microcontrollers made by Microchip Technology R©4.

The vehicle's data transfer to the OBD-II follows several protocols, but none
of them can be directly used in our smartphones. We need a device like the
ELM327 designed to act as an interface between the OBD ports and the stan-
dard RS232 [9].

Once the ELM327's connection is established using one of the previously listed
protocols, the device will send a message with the version of the ELM327
device, and later the character ′>′, which means that the device is ready to
receive characters through the RS232 port.

The characters sent to the device can be interpreted by the ELM327, determin-
ing if it is a con�guration command of the device itself, or a message for the
vehicle, in which case the message will be reformatted and sent to the OBD
interface. The device can determine who the message is addressed to since
messages that start with ′AT ′ are used for the con�guration of the ELM327

3http://ww1.microchip.com/downloads/en/DeviceDoc/39564c.pdf
4http://www.microchip.com/
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device, while the OBD commands intended for the vehicle are only allowed to
contain speci�c ASCII codes.

For either command type, the message must end with the carriage return
character (Hex ′0D′), so that it can be evaluated. If this is not the case, a
timer is activated automatically, and after 20 seconds, it will abort the message.

2.2 Heart rate monitor: Bluetooth Low Energy (LE) &
Chest Straps

Bluetooth low energy (LE), sometimes referred to as "Bluetooth Smart", is
the low power-version of Bluetooth that was built for the Internet of Things
(IoT). It is a light weight subset of Bluetooth, and was introduced as part of
the Bluetooth 4.0 core speci�cation.

One of those devices that take advantage of this technology are the chest
straps. A heart rate monitor consists of two parts, a transmitter attached to a
belt worn around the chest, and a receiver in the mobile device. As the heart
beats, an electrical signal is transmitted through the heart muscle in order for
it to contract. This electrical activity can be detected through the skin. The
transmitter then sends an electromagnetic signal containing heart rate data to
the mobile device. Heart rate sensors based on chest straps and Bluetooth Low
Energy operate according to the following state chart (show in Figure 2.2):

1. When the electrode areas on the reverse side of the strap detect skin
contact, Bluetooth Low Energy starts Peripheral role (as a Sensor) and
advertises to be connectable with a Collector (mobile).

2. When the Collector sends a Connection Request after a detected adver-
tising message, the Sensor accepts it and a short pairing phase will start
if needed.

STANDBY & INIT
CONNECTION 

ESTABLISHMENT
ADVERTISING CONNECTED

Connection

Established

Connection

Request

Skin

Contact ON

LinkLoss

Connection Failed

Or TIMEOUT

Collector

Disconnects

Skin Contact OFF for 20-30 sec

Disconnect BLE connection

Skin Contact OFF 

for 20-30 sec

Battery

Inserted

1 2 3 4

5

5
5

Figure 2.2: Operational �ow diagrams for the Heart Rate sensors.
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3. After pairing is �nished, the Collector enables heart rate noti�cations
from the Sensor by writing value 0x01 to the Client Characteristic Con-
�guration descriptor.

4. The Sensor will measure heart rate once in a second and sends it as a
Heart Rate Measurement Noti�cation.

5. After the strap is removed, absence of skin contact is detected by the
Sensor Contact. The Sensor terminate the BLE connection if contact is
absent for 20-30 seconds. When the Sensor is in standby mode, its current
consumption is very low (<1µA).

2.3 Introduction to Neural Networks

Arti�cial Neural Networks (ANNs) [13] are inspired by biology, in nature neu-
rons receive signals (inputs) from other neurons through synaptic connections
that can be exciting or Inhibited. Depending on the signals received, a neu-
ron sends a signal to other neurons in turn by means of the axon. A neuron
does nothing, unless the collective in�uence of all its inputs reaches a threshold
level. Whenever such a threshold is reached, the neuron produces an output,
consisting of a pulse that moves from the cell body, through the axon, to the
branches of this, and in this case it is said that triggers the neuron. A neuron
with this behavior is said to be an all or nothing device.

Arti�cial Neural Networks consist of neurons such as shown in Figure 2.3, which
represents a three-layer neural networks. The simulated neuron is seen as a
node connected to others via bonds corresponding to axon-synapsis-dendrite
connections. Each cell (process unit) supplies a value to its output, and this
value propagates through the network of unidirectional connections to other
cells in the network. Associated to each connection there is a weight Wij,
which determines the e�ect of the jthcell on the ithcell, which determines the
in�uence of one node on another, in�uences by weight of the link that connects
them. A large positive weight corresponds to a strong excitation, and a small
negative weight corresponds to a weak inhibition.

The activation function is one in which each node combines the separate in�u-
ences it receives on its input links to determine a global in�uence. Each cell
(process unit) supplies a value to its output, and this value then propagates
through the network of unidirectional connections to other cells of the network.
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Figure 2.3: Schematic representation of a Three-layer Neural Networks.

2.3.1 Neural Network Training

The main characteristic of Neural Networks is their ability to learn from their
inputs, and improve their success rate through learning. A Neural Network
learns through an interactive process of adjustments of its synaptic weights
and bias levels. The sequence of events that occur during learning is as follows:

1. Stimulate the Neural Network for its inputs.

2. The Neural Network changes in its parameters as a result of such stimu-
lation.

3. The Neural Network responds di�erently to new inputs because of the
changes that occurred in its internal structure.

The term learning algorithm refers to the set of well-de�ned rules for the so-
lution of a learning problem. There is a great variety of learning algorithms
(backpropagation for feedforward networks, Elman, Real-Time, Learning Algo-

11



Chapter 2. Background

rithm, etc.), each having its own advantages. Learning algorithms di�er from
each other in the way in which changes in synaptic weights are formulated.

The algorithm that has been chosen in this thesis is backpropagation because,
examining the type of problem that we have to solve, we observe that it is a
classi�cation problem where, starting from an input, that in our case are the
speed, acceleration, and the engine revolutions, we obtain as output the type
of road, and the driving style.

Backpropagation [14] is a type of supervised learning network that gives very
good results in classi�cation problems, as in the present research thesis. It
uses a two-phase propagation cycle. Once a pattern has been applied to the
input of the network as a stimulus, it propagates from the �rst layer through
the next layers of the network, until an output is generated. The output signal
is compared to the desired output, and an error signal is calculated for each
of the outputs. The error values are propagated backwards, starting from the
output layer, to all the hidden neurons layer that contribute directly to the
output.

The hidden neurons layer receive only a fraction of the total error signal, based
roughly on the relative contribution that each neuron has contributed to the
original output. This process is repeated, layer by layer, until all the neurons
in the network receive an error signal that gives us their contribution to the
total error. From here the connection weights of each neuron are updated, to
make the network converge to a state that allows to correctly classify all the
training patterns.

As the network trains, the neurons in the intermediate layers are organized
and learn to recognize di�erent characteristics of the input data. After train-
ing, neurons will respond with an active output if the new input contains a
pattern that resembles that characteristic that individual neurons have learned
to recognize during their training. Conversely, the units of the hidden layers
have a tendency to inhibit their output if the input pattern does not contain
the characteristic to be recognized, and for which they have been trained.

The application that has been used for the creation and training our proposed
Neural Networks has been JavaNNS [15], which is a java version of the SNNS
program [16] from TÜBINGEN University5. It has a friendly graphical inter-
face in addition to an on-line manual6 to start working e�ectively. The data to
train and validate the neural network are passed through a *.pat �le. In our

5http://www.ra.cs.uni-tuebingen.de/
6http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/manual/JavaNNS-manual.html
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system the problem arises at the time of exporting the generated model to real
code in the data center, since JavaNNS has not implemented the generation
of code of any type. However, since it allows exporting �les with the con�g-
uration of the extracted neural network, we were able to generate C code by
using the snns2.exe [16] utility.

2.4 Android Application development

Android is an open source and Linux-based Operating System for mobile de-
vices such as smartphones and tablet computers. Android was developed by
the Open Handset Alliance7, led by Google, and other companies.

Android o�ers a uni�ed approach to application development for mobile de-
vices, which means developers only need to develop for the Android platform,
and their applications should be able to run on di�erent devices powered by
Android.

The Android operating system is a stack of software components which is
roughly divided into �ve sections and four main layers, as shown below in the
architecture diagram in Figure 2.4. Next we discuss the most important blocks
of the Android architecture.

1. Linux kernel: At the bottom of the layers is Linux - Linux 3.6 with
approximately 115 patches. This provides a level of abstraction between
the device hardware, and it contains all the essential hardware drivers
like camera, keypad, display etc. Also, the kernel handles all the things
that Linux is really good at, such as networking and a vast array of device
drivers, which take the pain out of interfacing to peripheral hardware.

2. Libraries: On top of the Linux kernel there is a set of libraries including
the open-source Web browser engine WebKit, the well known library libc,
the SQLite database, which is a useful repository for storage and sharing
of application data, libraries to play and record audio and video, and SSL
libraries responsible for Internet security, among others.

3. Android Libraries: This category encompasses those Java-based li-
braries that are speci�c to Android development. Examples of libraries
in this category include the application framework libraries, in addition
to those that facilitate user interface building, graphics drawing, and
database access.

7http://www.openhandsetalliance.com/
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4. Android Runtime: This is the third section of the architecture, and it
is available on the second layer from the bottom. This section provides
a key component called Dalvik Virtual Machine, which is a kind of Java
Virtual Machine specially designed and optimized for Android.

5. The Dalvik VM:Makes use of Linux core features like memory manage-
ment and multi-threading, which is intrinsic in the Java language. The
Dalvik VM enables every Android application to run in its own process,
with its own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable
Android application developers to write Android applications using stan-
dard Java programming language.

6. Application Framework: The Application Framework layer provides
many higher-level services to applications in the form of Java classes.
Application developers are allowed to make use of these services in their
applications.

7. Applications: You will �nd all the Android application at the top layer.
Examples of such applications include Contacts, Books, Browsers, Games,
etc.

Android is a powerful operating system competing with Apple iOS 10 and it
supports great features. Some of them are listed in Table 2.4.
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Table 2.4: Android Application Features.

Feature Description

Connectivity
GSM/EDGE, IDEN, CDMA, EV-DO, UMTS,
Bluetooth,
Wi-Fi, LTE, NFC and WiMAX

Storage
SQLite, a lightweight relational database, is used
for data storage purposes

Media support
H.263, H.264, MPEG-4 SP, AMR, AMR-WB,
AAC, HE-AAC, AAC 5.1, MP3, MIDI, Ogg Vor-
bis, WAV, JPEG, PNG, GIF, and BMP

Messaging SMS and MMS

Web browser
Based on the open-source WebKit layout engine,
coupled with Chrome's V8 JavaScript engine sup-
porting HTML5 and CSS3

Multi-touch
Android has native support for multi-touch which
was initially made available in handsets such as the
HTC Hero

Multi-tasking
User can jump from one task to another and same
time various application can run simultaneously

Resizable widgets
Widgets are resizable, so users can expand them to
show more content or shrink them to save space

Multi-Language Supports single direction and bi-directional text

GCM

Google Cloud Messaging (GCM) is a service that
lets developers send short message data to their
users on Android devices, without needing a pro-
prietary sync solution

Wi-Fi Direct
A technology that lets apps discover and pair di-
rectly, over a high-bandwidth peer-to-peer connec-
tion

Android Beam
A popular NFC-based technology that lets users
instantly share, just by touching two NFC-enabled
phones together
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Home             Dialer       SMS/MMS      DrivingStyles       Camera         Alarm          Calculator

Surface Manager       Media Framework              SQLite

      OpenGL                    Free Type                LibWebCore

 
        SGL                              SSL                            Lib

Display Driver          Camara Driver          Bluetooh Driver           Flash Memory            Binder(IPC) Driver

  USB Driver              Keypad Driver              WiFi Driver               Audio Drivers                Power 
                                                                                                                                               

Activity Manager     Window Manager       Content Provider          View System             Notofication       

Package                     Telephony                 Resource                      Location                 XMPP Service 
Manager                     Manager                     Manager                      Manager              

Contacts      Voice  Dial        Email         Calendar       Player           Albums          Clock         ...

Dalvik Virtual Machine

Figure 2.4: Android operating system stack of software components.
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2.5 Data Center: Multi-tier Architecture

A Multi-tier Architecture is a software architecture in which di�erent software
components, organized in tiers (layers), provide dedicated functionality. The
most common occurrence of a multi-tier architecture is a three-tier system
consisting of a data tier (mostly encompassing one or several database servers),
an logic tier (business logic) and a presentation tier (interface functionality).
Web information systems, for instance, encompass a dedicated tier (web tier)
between client and logic layer. Figure 2.5 shows the overview of a three-tier
application.

Conceptually, a multi-tier architecture results from a repeated application of
the client/server paradigm. A component in one of the middle tiers is client to
the next lower tier and at the same time acts as server to the next higher tier.

Three-tier architecture:

1. Presentation tier This is the topmost level of the application. The
presentation tier displays information related to such services as browsing.
It communicates with other tiers by which it puts out the results to the
browser/client tier and all other tiers in the network. In simple terms,
it is a layer which users can access directly (such as a web page, or an
operating system's GUI).

2. Logic tier The logical tier is pulled out from the presentation tier and,
as its own layer, it controls an application's functionality by performing
detailed processing.

3. Data tier The data tier includes the data persistence mechanisms (database
servers, �le shares, etc.) and the data access layer that encapsulates the
persistence mechanisms and exposes the data. The data access layer
should provide an API to the application tier that exposes methods of
managing the stored data without exposing or creating dependencies on
the data storage mechanisms.
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Figure 2.5: Overview of a three-tier application.
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Abstract

The DrivingStyles architecture integrates both data mining techniques and
neural networks to generate a classi�cation of driving styles by analyzing the
driver behavior along each route. In particular, based on parameters such as
speed, acceleration, and revolutions per minute of the engine (rpm), we have
implemented a neural network based algorithm that is able to characterize
the type of road on which the vehicle is moving, as well as the degree of
aggressiveness of each driver. The �nal goal is to assist drivers at correcting
the bad habits in their driving behavior, while o�ering helpful tips to improve
fuel economy.

In this work we take advantage of two key-points: the evolution of mobile
terminals and the availability of a standard interface to access car data. Our
DrivingStyles platform to achieve a symbiosis between smartphones and vehi-
cles able to make the former operate as an onboard unit. Results show that
neural networks were able to achieve a high degree of exactitude at classify-
ing both road and driver types based on user traces. DrivingStyles is currently
available on the Google Play Store platform for free download, and has achieved
more than 1550 downloads from di�erent countries in just a few months.

3.1 Introduction

Mobile devices have experienced a technological breakthrough in recent years,
evolving towards high performance terminals with multi-core microprocessors,
being smartphones a clear representative exponent of this trend. In addi-
tion, the On Board Diagnostics (OBD-II) [1] standard, available since 1994,
has recently become an enabling technology for in-vehicle applications due to
the available of Bluetooth OBD-II connectors [9]. These connectors enable a
transparent connectivity between the mobile device and the vehicle's Electronic
Control Unit (ECU).

The range of possibilities that arise when combining cars and smartphones is
endless, allowing, for example, diagnosing the car via mobile devices which
assume the tasks that are typically performed by the On Board Unit (OBU)
of the vehicle, or sending the collected data to a platform where diagnosis and
vehicle maintenance can be done, detecting possible failures automatically.

Based on obtained data about the speed, acceleration, and revolutions per
minute of the engine, we have implemented our DrivingStyles platform, which
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is based on neural networks and permits characterizing the driving style of each
user, as well as the type of road on which the vehicle is circulating. Currently,
this information is being collected and used in applications aimed at improving
road safety and promoting eco-driving [17], thus reducing fuel consumption and
greenhouse gas emissions. The given recommendations addressing the driving
style of each user can save up to 20 % of fuel while improving driving safety.

The rest of this paper is organized as follow: Section 3.2 brie�y reviews pre-
vious related works. Then, Section 3.3 provides an overall overview of the
DrivingStyles architecture. Both client and server side applications are de-
scribed in more detail in sections 3.4 and 3.5, respectively. The neural network
we have developed, along with the achieved accuracy results, are presented in
section 3.6. Finally, section 3.7 presents the conclusions of our work.

3.2 Related Work

Technological achievements in the �eld of mobile are making smartphones very
powerful devices. In the research world, this high computing power opens new
and attractive research areas where many of them are able to generate economic
pro�t and signi�cant advantages for our society.

One of the main problems of eco-driving systems [17] is identifying the factors
that a�ect energy consumption. Ericsson [18] suggests that, in order to save
fuel, sudden changes in acceleration and high speed driving should be avoided.
Johansson et al. [19] suggest maintaining low levels of deceleration, minimizing
the use of the �rst and second gears, and putting every e�ort into using the
5th and 6th gears, while avoiding continuous gear changes.

There are several proposals that analyze which variables a�ect fuel consump-
tion. Kuhler [20] presented a set of ten variables. These variables are used in
laboratories that work with the consumption of fuel and gas emissions. Other
authors, like André [21] and Fomunung [22], increased the number of parame-
ters, or replaced some of them in order to improve the obtained results. The
problem of all the previous proposals is that the environment in which the ve-
hicle is circulating is not considered, despite it has a very signi�cant in�uence
on the energy consumption.

Regarding other works related to the proposal discussed in this chapter, it
is worth highlighting the work by Chen et al. [23], who proposed an An-
droid/OSGi vehicular platform able to diagnose and manage the status of a
vehicle remotely, using visual intelligence to continuously update their appli-
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cation services based on context, and without user intervention. Experiments
conducted on a test vehicle showed that Android/OSGi applications are able
to achieve higher performance compared to a pure Android development, es-
pecially when complex operations must be performed.

Focusing on road safety, systems such as e-NOTIFY [24] allow a fast detection
of tra�c accidents, improving the assistance to injured passengers by reduc-
ing the response time of emergency services. The proposed system requires
installing OBUs on board vehicles that are in charge of detecting accidents,
as well as notifying them to external control units (CU); the latter estimates
the severity of the accident and automatically informs the emergency services.
Zaldivar et al. [25] propose an Android-based application that monitors the
vehicle through the On Board Diagnostics (OBD-II) interface, being able to
detect accidents and sending details about the accident to pre-de�ned destina-
tions through either e-mail or control units (SMS; these tasks are immediately
followed by an automatic phone call to the emergency services.

Our solution di�ers from the former ones by providing an analysis of the driving
style of each user in the scope of urban, suburban, or highway scenarios, which
is based on neural network techniques, and promoties a more responsible and
eco-driving behavior.

3.3 DrivingStyles Architecture

The proposed architecture applies data mining techniques to generate a clas-
si�cation of the driving styles of users based on the analysis of their mobility
traces. Such classi�cation is generated taking into consideration the charac-
teristics of each route, such as whether it is urban, suburban or highway.

To achieve the overall objective, the system is structured around the following
four elements, see Figure 3.1:

1. An application for Android based smartphones. Using an OBD-II Blue-
tooth interface, the application collects information such as speed, accel-
eration, engine revolutions per minute, throttle position, and the vehicle's
geographic position. After gathering this information in real time, the
user uploads the route data to the remote data center for analysis.

2. A data center with a web interface able to collect large data sets sent by
di�erent users concurrently, and to graphically display a summary of the
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Figure 3.1: DrivingStyles: architecture overview.

most relevant results. Our solution is based on open source software tools
such as Apache, PHP and Joomla R©.

3. A neural network, which must be designed and trained using the most
representative route traces in order to correctly identify, for each path
segment, the driving style of the user, as well as identify the segment
pro�le: urban, suburban or highway. To implement our neural network
we adopted the backpropagation algorithm [14], which has been proven to
provide good results in classi�cation problems such as the one associated
to this project.

4. Integration of the neural networks in the data center platform. The goal
is to dynamically and automatically analyze user data, allowing users to
�nd out their pro�les as a driver, thus promoting a less aggressive and
more ecological driving.

Figure 3.1 graphically shows the steps followed by users of the DrivingStyles
platform to assess their driving styles. The �rst step is registering the user at
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http://www.drivingstyles.info, and downloading the free Android appli-
cation.

After installing the Android application in the smartphone, and after connect-
ing to the bluetooth ELM327 [9] interface inside the car (this connector is
mandatory on all vehicles since 2001), the data acquisition process can start.
Once the route is completed and stored, the user can send it to the server,
which checks the username and password before accepting the incoming XML
�le. Through the web interface, the user can view all the routes sent to the
server, and have access to the di�erent statistics, the map of the route, the
characterization of the driving style, and the recommendations on eco-driving.

3.4 Android application

The Android application is a key element of the system, proving connectivity
to the vehicle and to the DrivingStyles web platform. Currently, it can be
downloaded for free from the DrivingStyles website 1, or from Google Play 2.

3.4.1 Con�guration options

In order to adjust the functionality of our Android application to the user
requirements, several con�guration options must be de�ned related to user
creation, connection options, GPS activation, and sensor sampling.

The available functionalities are the following:

1. User creation: A username and password matching those registered in
the website must be introduced, allowing the server to validate the user
credentials before storing any data in the database.

2. OBD Connection: Before starting the sampling process, the device
must be paired with the OBD-II interface. Once the device is paired
with the smartphone, it can be selected from the list of available devices
within the application.

3. GPS Activation: although GPS data is not mandatory for data cap-
turing purposes, it is necessary in the broader scope where the study is
being done, since the variables retrieved from the vehicle are recorded
along with the car's geographical position for later analysis.

1http://www.drivingstyles.info
2https://play.google.com/store/apps/details?id=com.driving.styles
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3.4 Android application

4. Sensor sampling: The user can individually select the vehicle sensors
used by the application for monitoring and storage among the following
ones: acceleration, engine revolutions per minute (rpm), throttle position,
and instantaneous speed. Additionally, the user can de�ne the sampling
rate (number of samples per sensor, and per second).

3.4.2 Application Modules

The main module of our application launches the background processes re-
sponsible for capturing data sent by the OBD-II and the GPS interfaces, as
well as the phone's accelerometer.

Besides showing the sensors we are monitoring, we can perform several parallel
actions without a�ecting the data capture. Possible options are:

• Start and stop data capture of the Electronic Control Unit (ECU), the
mobile's accelerometer, and the GPS.

• List the routes captured by the app.

• Driving style display.

• Show the current position of the vehicle on the map, as well as the detailed
route followed whenever an Internet connection is available.

• Real time visualization of the speed, rpm, and acceleration in a time
window of 10 seconds.

The route upload module is in charge of sending the users' traces to the website
data center for further analysis. This module can be accessed either from the
historic stored routes, or immediately after stopping the data capture. The
information screen displays the header information of the selected route such
as: date of the captured data, start time, �nish time, and maximum speed.

This module includes a graphical interface in charge of showing routes on a
map, as well as the collected statistics. Additionally, it also includes commu-
nication facilities for uploading the collected routes to the data center.

Finally, the �le received in the DrivingStyles data center is stored in the corre-
sponding user directory, and also generates a record in the database for every
sample submitted for analysis.
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Figure 3.2: DrivingStyles: architecture overviewSnapshots of the acceleration, speed, rpm
parameters and map module.

The Map Module and Graphical Information are in charge of displaying the
relevant information to the user in the most convenient manner. The graphs
can be displayed in real-time or by selecting data from previously stored paths.
Depending on the device model, the user can also zoom in and out to display
all or part of the graph using the device's touch screen.

The charts that appear on the screen are the acceleration, the speed, and the
revolutions per minute (rpm). We have chosen these three parameters since
they are the most relevant ones, and because they are the ones we selected for
training our neural network.

The map module allows displaying the GPS position on the map. GPS coor-
dinates are drawn using the Google Maps APIs. A green car icon indicates
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the beginning of the route, and a red icon shows the current position of the
vehicle. The path is shown by using di�erent colors depending on the vehicle±
speed (see Figure 3.2).

3.5 DrivingStyles Web interface

The second main component of our architecture corresponds to the data center
and its web interface. For this endeavor we have selected open source soft-
ware such as Apache HTTP, and Joomla R©as the content management system
(CMS). The URL of this module is http://www.drivingstyles.info.

Figure 3.3: Snapshot of a route map.

Once the user is logged in, he is asked to record a number of important data,
especially for future data mining studies. The most relevant items are sex,
age, and other details concerning the vehicle used: car manufacturer, model,
fuel type, and the theoretical 0-100 acceleration (important to normalize the
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user behavior in our study). Finally, a third block allows drivers to indicate
what they feel about their own behavior behind the wheel, i.e., whether they
perceive themselves as aggressive, moderate, or quiet drivers.

In the Routes' section, the users can access all the routes they have uploaded.
The �rst grid shows routes that are in the database, including the name, date,
starting time, ending time, samples sent, total time, average speed, and kilo-
meters travelled. Below the grid, the selected route is shown in a map. The
path varies its color depending on the speed of the car (see Figure 3.3).

In addition, the last two graphs show the results returned by the neural net-
work, including the driving style and the route characteristics (see Figures
3.6(b), and 3.6(a)).

Next, in section 3.6 we provide detailed information about the neural network
we proposed for characterizing routes and drivers.

3.6 Neural Networks based data analysis

In this project we face a classi�cation problem: starting from some input data,
which in our case are the speed, the acceleration, and the revolutions per
minute of the engine (RPM), we obtain as output the type of road and the
driving style.

We train Arti�cial Neural Networks to classify the driving style of each user
and the type of route based on a well-de�ned set of rules and the ECU in-
put variables. There are many di�erent learning algorithms, such as back-
prop_momentum, Hebbian, or delta-rule, each one having its own advantages
and disadvantages depending on the type of problem to solve [26]. In the
scope of this work, we decided to choose backpropagation [14] since this kind
of algorithm provides very good results in classi�cation problems.

After considering the many variables that can be obtained from the Electronic
Control Unit (ECU), we have chosen to train the neural network using the mean
and the standard deviation values of: a) the speed, b) the vehicle acceleration,
and c) the rpm. In all vehicles used for testing, these variables were easily
obtained, while other variables, such as the position of the throttle, and despite
being able to provide important information for the neural network training,
�nally had to be rejected because not all ECU manufacturers provide such
information. The data input of each parameter is normalized between 0 and 1;
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this normalization should take into consideration the whole range of possible
values. The equation used to normalize the input parameters is the following:

xp′
=

xp −min(x)

max(x)−min(x)
(3.1)

Notice that xp′
is the normalized value of input variable x for pattern p, xp

is the original value of variable x for that pattern, and min(x) and max(x)
represent the minimum and maximum values for the input variable, i.e., the
minimum and maximum values of the column corresponding to variable x.

The application used for the creation and training of the neural networks re-
quired by this project was JavaNNS [15], which is a Java version of the SNNS
software developed at the University of Tübingen.

3.6.1 Neural Network description

An empty neural network was created by de�ning the number of entries men-
tioned previously, along with the number of hidden nodes (nine in our case).
A larger number of hidden nodes can improve the success rate, but it has the
negative e�ect of increasing the response time. Two similar neural networks
were created, each one with three output nodes; the �rst neural network (see
Figure 3.4(a)) allows to classify the type of road (urban, suburban or highway),
and the second permits to characterize the user's driving style (quiet, normal
or aggressive). Random weights between -1 and 1 are assigned to the links of
both neural networks during initialization. Figure 3.4(b) shows the equivalence
color map with their weight values for the neural network identifying the road
type (�rst one).
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(a) Trained neural network.

(b) Weights of the links of the neural network.

Figure 3.4: Trained neural network and associated weights.
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3.6.2 Training the Neural Network

After normalizing the input variables, the training set was generated. This data
set is used to adjust the weights of the neural network. After the neural network
is trained, we generate validation �les. This data set is used to minimize
over�tting, verifying that any increase in accuracy over the training data set
actually yields an increase in accuracy over a broader data set that has not
been used for training.

In order to do so, we rely on the average error for the test set: E =
∑m

p=1 |d
p−yp|

m
where |dp − yp| is the absolute error for pattern p, i.e., the absolute value of
the di�erence between the desired output and the output obtained, m is the
number of patterns, and the sum corresponds to the sum of absolute errors for
all patterns.

We started training the neural network by adjusting the learning rate to 0.2
and observing how the error a�ects our neural network. The higher the learn-
ing rate, the higher the modi�cation of the weights for each iteration, so the
learning process becomes fast. However, this can cause unwanted oscillations
in the network. The convergence results of the two neural networks are the
following:

1. Road type characterization: By iterating with a learning rate of 0.2, we
see how the learning process slows down for a local minimum MSE with
an error of 0.021. The network starts converging quickly again beyond
300 cycles, as shown is the mean square error shown in Figure 3.5(a).

2. Driving style characterization: This characterization is more complex
than the road type, and no local minimum is reached as quickly as in
the previous case; also, the error of the neural network is much higher
(see Figure 3.5(b)). At the end of these tests we chose to use the trained
neural network with a learning rate of 0.4, which achieves the lowest error
among all the tested values, with a mean square error of 0.43 and a sum
of squared errors of 6.11 (SSE).

Once the neural network is successfully trained (see Figure 3.4(a)), the knowl-
edge obtained must be converted into usable code. We use the snns2.exe ap-
plication [16], to convert the trained neural network into C code, and this code
was then integrated in to the web platform for data classi�cation purposes.
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3.6.3 Obtained results

With the neural network already implemented, every time a route or route
segment is selected, the system automatically returns the type of road, and
the associated driving style. The overall behavior of each user can also be
obtained by evaluating all the routes sent by the user.

The results obtained from a real set of data can be seen in Figure 3.6. Figure
3.6(a) graphically shows the result returned by our neural network when deter-
mining the route type. The abscissa axis corresponds to the timeline, and the
vertical axis to the degree of matching for the dominant route type. We can
see that, in this example, the user starts and ends in an urban environment,
going through a suburban route in between; such results represent an accurate
classi�cation of the actual route followed by the driver. Figure 3.6(b) refers
to the neural network results that determine the behavior on that route; as
in the previous graph, the abscissa axis corresponds to the temporal line, and
the ordinate axis is a behavior correlation percentage, where each color identi-
�es a di�erent type of driver behavior. We can observe that most of the time
the driver is showing an aggressive behavior, which alternates with periods of
quiet behavior. When analyzing the actual route with the driver, we �nd that
periods of quiet behavior were associated with slow transit areas where vehicle
queueing and semaphores impeded a more aggressive driving style.

Overall, and after analyzing a wide set of routes with diferent drivers, the
system has shown to provide a correct classi�cation of the di�erent route traces
registered in the database, both in terms of route types and driving styles,
validating the proposed solution.
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(a) Convergence when training the road type with 2000 cycles.

(b) Convergence when training the driving style with 5000 cycles.

Figure 3.5: Neural networks convergence behavior
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(a) Route type.

(b) Route behavior.

Figure 3.6: Snapshots of route type and behavior.
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3.7 Conclusions and future work

In this chapter we presented the DrivingStyles platform, which integrates mo-
bile devices with data obtained from the Electronic Control Unit (ECU) to
determine the type of road where the driver is circulating, as well as his driv-
ing habits. Its main goal is to help promoting a safer and more ecological
driving style by making drivers more conscious about their behavior on the
road. Our platform o�ers helpful tips to reduce fuel consumption with the
consequent impact on the environment. We implemented this platform using
real devices, and the results we obtained based on real user traces are quite
encouraging, showing that the classi�cation of both routes and driving styles
using neural networks presents a high correlation with the actual routes and
driver behavior.

The application, which is available for free download in the DrivingStyle's
website3 and in the Google Play Store4, has achieved more than 1550 downloads
from di�erent countries in just a few months. This shows the great interest for
applications integrating smartphones with vehicles.

As future work we plan to monitor the fuel consumption in order to correlate
it with the driver aggressiveness so making the driver more aware of their
bad habits while driving. We are also extending the platform to provide tra�c
recommendations based on real-time feedback about the congestion of di�erent
routes.

3.8 Acknowledgments

This work was partially supported by the Ministerio de Ciencia e Innovación,
Spain, under Grant TIN2011-27543- C03-01.

3http://www.drivingstyles.info
4https://play.google.com/store/apps/ details?id=com.driving.styles

35





Chapter 4

Assessing the Impact of Driving

Behavior on Instantaneous Fuel

Consumption

Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano,
Pietro Manzoni

Assessing the Impact of Driving Behavior on Instantaneous Fuel
Consumption

12th IEEE Consumer Communications and Networking Conference
CCNC 2015 January 9-12, Las Vegas, Nevada USA.
Pages 443-448, ISBN: 978-1-4799-6390-4 CORE: B

37



Chapter 4. Assessing the Impact of Driving Behavior on Instantaneous Fuel Consumption

Abstract

Despite the recent technological improvements in vehicles and engines, and
the introduction of better fuels, road transportation is still responsible for air
pollution in urban areas due to the increasing number of circulating vehicles,
and their relative travelled distances. We develop a methodology to calculate,
in real-time, the consumption and environmental impact of spark ignition and
diesel vehicles from a set of variables such as Engine Fuel Rate, Speed, Mass
Air Flow, Absolute Load, and Manifold Absolute Pressure, all of them ob-
tained from the vehicle's Electronic Control Unit (ECU). Our platform is able
to assist drivers in correcting their bad driving habits, while o�ering helpful
recommendations to improve fuel economy. In this chapter we will demonstrate
through data mining, to what extent does the driving style really a�ect (nega-
tively or positively) the fuel consumption, as well as the increase or reduction
of greenhouse gas emissions generated by vehicles.

4.1 Introduction

The increasing cost of fuel and the environmental pollution caused by green-
house gas emissions has encouraged the research of more energy e�cient ve-
hicles. At the same time, mobile platforms have evolved according to user
requirements, and have been applied in di�erent �elds of industry such as the
automotive, where smartphones are starting to be integrated in vehicles; this
clearly opens a new and exciting area of research.

The On Board Diagnostics (OBD-II) [7] standard has recently become an en-
abling technology for in-vehicle applications due to the availability of Bluetooth
OBD-II connectors [9], which enables transparent connectivity between mobile
devices and the vehicle's Electronic Control Unit (ECU).

Among the di�erent strategies to reduce fuel consumption and greenhouse gas
emissions, the DrivingStyles' platform [27] aims to sensitize drivers about their
driving style, making them aware that the driving style is directly related to
fuel consumption and gas emissions.

DrivingStyles implements a solution based on neural networks which is capable
of characterizing the type of road on which the vehicle is circulating, as well
as the driving style of each user [27]. In order to achieve this, the data is
obtained from the ECU via the OBD-II Bluetooth interface, including the
speed, acceleration, and revolutions per minute of the engine.
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In this chapter we improve the DrivingStyles' platform by calculating the in-
stantaneous fuel consumption; in this platform, the following variables are
obtained in real time: Mass Flow sensor (MAF), manifold absolute pressure
(MAP), and Intake Air Temperature (AIT). Currently, this information is be-
ing collected and used in applications aimed at improving road safety and to
promote eco-driving [17], thus reducing fuel consumption and greenhouse gas
emissions. Speci�cally we �nd that, by shifting towards a more e�cent driving
style, users can save up to 20% of fuel while improving driving safety [28, 29].

This paper is organized as follows: in the next section we present some related
works. Section 4.3 introduces the DrivingStyles architecture. Both client and
server side applications are described in more detail in section 4.3. The cal-
culations consumption and CO2 emissions are presented in sections 4.4 and
4.5, respectively. Section 4.6 presents the performance results we obtained.
Finally, section 4.7 concludes our work.

4.2 Related Work

One of the main problems of eco-driving systems [17] is identifying the factors
that a�ect energy consumption. Ericsson [18] suggests that, in order to save
fuel, sudden changes in acceleration and high speed driving should be avoided.
Johansson et al. [19] suggest maintaining low levels of deceleration, minimizing
the use of the �rst and second gears, and using, when ever possible, the 5th and
6th gears, while avoiding continuous gear shifts. There are several proposals
that analyze which variables a�ect fuel consumption. Kuhler [20] introduced a
set of ten variables that are used in laboratories for fuel consumption and ve-
hicle emissions. Other authors such as André [21] and Fomunung [22] improve
these results by increasing and replacing some of the parameters.

In previous works such as D.Y.C. Leung [30] and COPERT III [31], di�erent
tools were developed to collect in real time the engine and vehicle parameters
from the OBD connector. Moreover, in conjunction with an exhaust analyzer
Horiba OBS [32], a set of consumption and emission models were developed
for vehicles equipped with spark ignition engines. Several commercial OBD-
II scanner tools are available, that can read and record these sensor values.
Apart from such scanners, remote diagnostic systems such as GM's OnStar,
BMW's ConnectedDrive, and Lexus Link [33, 34] are capable of monitoring
engine parameters from a remote location.

Our solution di�ers from all the previous ones by providing an analysis of
the driving style for each user in the scope of eco-driving behavior based on
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neural network techniques. By calculating the consumption and greenhouse
gas emissions generated by both types of engines (spark ignition and diesel
vehicles), we are able to closely relate both results, detailing the fuel savings
achieved by soft driving patterns compared to aggressive ones.

Figure 4.1: System architecture of DrivingStyles.

4.3 Overview of the DrivingStyles Architecture

The DrivingStyles architecture applies data mining techniques (process of dis-
covering patterns in large data sets involving, methods of arti�cial intelligence,
machine learning, statistics, and database systems) to generate a classi�cation
of the driving styles of users based on the analysis of their mobility traces.
Such classi�cation is generated taking into consideration the characteristics of
each route, such as whether it is urban, suburban, or highway.

Figure 4.1 shows the system architecture which comprises four elements:

1. An application for Android based smartphones (see Figure 4.1.b). (i)
Using an OBD-II Bluetooth interface, the application collects control
information such as speed, acceleration, engine revolutions per minute,
throttle position, and vehicle's geographic position (obtained from GPS
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mobile). (ii) In addition, we also obtain via OBD-II the Mass Flow sen-
sor (MAF), Manifold Absolute Pressure (MAP), and the Intake Air Tem-
perature (AIT) used in the calculation of fuel consumption. (iii) After
gathering the information, the user uploads the route data to the remote
data center for analysis.

2. A data center with a web interface to collect large data sets sent by
di�erent users concurrently, and to graphically display a summary of the
most relevant results including the fuel e�ciency. Our solution is based
on open source software tools such as Apache, PHP and Joomla R©.

3. A neural network, which must be trained using the most representative
route traces in order to correctly identify, for each path segment, the
driver's style, as well as the segment pro�le: urban, suburban or highway.
We use the backpropagation algorithm [14], which has proven to provide
good results in classi�cation problems such as the one associated to this
project.

4. Integration of the tuned neural networks in the data center platform. The
goal is to use neural networks to dynamically and automatically analyze
user data, allowing users to �nd out their pro�les as a driver, as well as
their fuel consumption (which is related to their driving behavior), thus
promoting a less aggressive and more ecological driving (see Figure 4.2).

4.3.1 Android Application and Web Interface

The Android application is a key element of our system, proving connectivity to
the vehicle and to the DrivingStyles web platform. Currently, it can be down-
loaded for free from the DrivingStyles website http://www.drivingstyles.
info, or from Google Play1 (more than 4500 downloads).

The available functionalities are: (i) User creation, (ii) Connection options,
(iii) GPS Activation, (iv) Sensor sampling.

Our application captures data sent by the OBD-II and the GPS interfaces, as
well as the phone's accelerometer (see Figure 4.3).

Besides showing the sensors that we are monitoring, we can perform several
parallel actions without a�ecting the data captured.

1https://play.google.com/store/apps/details?id=com.driving.styles
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(a) Urban routes.

(b) Suburban routes.

Figure 4.2: Snapshots of route type and behavior.

The route upload module is in charge of sending the users' traces to the website
data center for further analysis. This module can be accessed either from the
historic stored routes, or immediately after stopping the data capture. The
information screen displays the header information of the selected route, such
as: (i) date of the captured data, (ii) start time, (iii) �nish time, (iv) maximum
speed and (v) fuel consumption.

Our application includes a graphical interface for showing the routes on a map,
as well as the collected statistics. Additionally, it also includes communication
facilities for uploading the collected routes to the data center.
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Figure 4.3: Snapshots of the main screen and the data sending module.

The second main component of our architecture corresponds to the data center
and its web interface. For this, we have selected open source software such as
Apache HTTP, and Joomla R© as the content management system (CMS). We
have used a CMS, combined with the use of a resource wrapper, which detachs
our system from the presentation layer, thus focusing on the problem of driving
styles characterization and the in�uence of the latter fuel consumption. The
URL of this module is http://www.drivingstyles.info.

Next, we present our fuel consumption estimation approach relating it with
the driver style as captured by the DrivingStyles platform.
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4.4 Fuel Consumption / Instantaneous Fuel Consumption
Calculation

Fuel consumption is usually represented as the ratio of fuel consumed per
distance travelled, being measured in terms of litres per 100 kilometres (or
alternatively as MPG-Miles Per Gallon). In this work we focus on petrol and
diesel engines. Although the basic designs of gasoline and diesel engines are
similar, the mechanics are di�erent. A gasoline engine compresses its fuel and
air charge, and then initiates combustion by the use of a spark plug. A diesel
engine just compresses air until the combustion chamber reaches a temperature
for self-ignition to occur. So, at a given speed in kilometres per hour, fuel
consumption can be calculated as follows:

Fuel Consump. [l/100km] =
Fuel F low [l/h]

Speed [km/h]
· 100 (4.1)

Instantaneous fuel economy/consumption is calculated from the current fuel
�ow and the current vehicle speed. It can be only be calculated when the
vehicle is moving and the engine is operating.

Instanta. Fuel Consump. [l/km] =
Fuel F low [l]

Speed [km]
(4.2)

Again, not all vehicles support all the OBD PIDs, and there are usually many
manufacturer-de�ned custom PIDs that are not de�ned in the OBD-II stan-
dard. So, the OBD standard does not provide a fuel consumption parameter;
instead, it provides other values that enable its calculation. Depending on the
variables that the ECU can supply, the mathematical procedure to determine
fuel consumption is di�erent (see Figure 4.4).

1. By combining the Engine Fuel Rate (PID 015E), also known as Fuel
Flow (litres/hour), and Speed (PID 010D), it is easy to calculate fuel
consumption. However, while speed is mandatorily available, fuel rate is
not. In fact, it was unavailable in all the vehicles we used to carry out
our tests. This can be due to two reasons: (i) the manufacturer chooses
not to make it available, or (ii) there is no sensor inserted in the fuel line
between the fuel tank and the engine carburetor to measure litres per
hour.
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Figure 4.4: Scheme of the di�erent possibilities of MAF calculation.

2. If the MAF PID is available, but the Engine Fuel Rate is not, we can
calculate fuel rate as Fuel Flow (litres/hour) by dividing the Mass Air
Flow (PID 0110) · 3600 sec. by the product of air-to-fuel ratio and Fuel
Density (see Table 4.1):

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD (4.3)

where MAF refers to Mass Air Flow (g/s), AFRA to the actual Air-to-
Fuel Ratio (see Table 4.1), and FD - Fuel Density (g/l, see Table 4.1),
allowing us to directly calculate fuel consumption.

3. If MAF is not available there are two ways to calculate it (see Figure 4.4).

• As a function of absolute load (PID 0143), RPM (PID 010C) and
Engine Displacement (EngDisp, volume of an engine's cylinders in cm3,
intake stroke is the �uid admission phase of a reciprocating cylinder).
The equation is:
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MAF [g/s] = 1.184 [g/l] · EngDisp [l/intakestroke]

·load abs/100 · enginespeed [rpm] (4.4)

/2 · [rpm/intakestroke] /60 [sec/min]

Figure 4.5: Outline of the calculation of the Fuel Flow average.

• As a function of the Intake Manifold Pressure (PID 010B), RPM (PID
010C), Intake Air Temperature (PID 010F) and Engine Displacement.
A synthetic variable called IMAP can be used to estimate the Mass Air
Flow (MAF) of an internal combustion vehicle, much like a MAF sensor.
In order to make this calculation, the engine displacement and volumetric
e�ciency of the engine must be provided.

IMAP = RPM · MAP/IAT/2 (4.5)

Where RPM (PID 010C) is the engine speed in RPM (PID 010C), MAP
(PID 010B) is the Manifold Absolute Pressure measured in kilopascal
kPa, and IAT (PID 010F) is the Intake Air Temperature measured in
degrees Kelvin. This integrated value can be converted into total air �ow
(grams) using the following formula:

MAF [g/s] = (IMAP/60) · (V olEff/100)

· EngDisp · MMAir/R (4.6)

Where VolE� is Volume E�ciency (which relates the actual and the the-
oretical volumetric �ow rate in %), EngDisp is the Engine Displacement
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Table 4.1: Ideal air/fuel ratio (grams of air to 1 gram of fuel)−Density(g/dm3).

Fuel Type Ratio by mass Density g/dm3

Gasoline 14.7 : 1 820
Diesel 14.5 : 1 750

(the volume of an engine's cylinders in cm3) and R is 8.314 J/oK/mole.
These parameters are used to formulate the equation in order to obtain
reliable OBD data, which is then compared to the data given by the ve-
hicle manufacturer to ensure its accuracy.
The Air Fuel Flow can then be calculated as follows: (see Figure 4.5).

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD (4.7)

4.5 Greenhouse Gas Emissions Calculation

The most signi�cant greenhouse gases are generated from direct combustion
carbon dioxide CO2, Methane (CH4), and Nitrous oxide (N2O), among others.
CO2 is always generated when burning fuel that contains carbon. Since the
carbon in the fuel is combined with the oxygen in the air: C + O2 → CO2,
the amount of CO2 can be calculated by the atomic masses of carbon and
oxygen and the carbon content of the fuel. The atomic mass of carbon is 12U
and oxygen is 16U , meaning that CO2 = 12U + 2 · 16U = 44U . Burning
1 kg of carbon produces 44/12 ≈ 3, 67kg of CO2 in complete combustion,
and so the CO2 emission of combustion is 3, 67 · Cc · mfuel where Cc =
fuel carbon content (mass bassis). Considering that the carbon content of
diesel fuel is 85, 7 % the CO2 emission when burning 1 kg (mfuel = 1kg) of
diesel fuel is:

mCO2
= 3.67 · Cc · mfuel

mCO2
= 3.67 · 0, 857 · 1 [kg] = 3.15 [kg/1kg fuel]

Density of diesel fuel is 0.84 [kg/l]

mCO2
= 3.15 [kg] · 0.84 = 2.64 [kg/1l fuel] (4.8)

Driving in a fuel-e�cient manner can save fuel, money, and reduce greenhouse
gas emissions. Among the factors that can a�ect fuel consumption, such as:
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vehicle age and condition, outside temperature, weather, and tra�c conditions,
we consider that driver behavior can be the most relevant parameter.

4.6 Experimental Results and Evaluation

In our project, we focus on measuring fuel consumption variations associated
with di�erent driver behaviors. In order to achive this objetive, we rely on
the collaboration of 264 drivers from around the world using our platform,
including countries like India, Brazil, Central America, and Europe [35]. In
this particular study, we analyzed the behavior of 34 representative routes (each
divided into 20 second periods) using the neural network described earlier. For
each section, the neural network returns the corresponding driver behavior,
and we combine this data with the fuel consumption data corresponding to
that route.

Figure 4.6: Chart of consumption and CO2 in relation to the driving behavior.
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Figure 4.7: Comparative chart between two drivers and their behavior.

We carried out several types of tests to validate our proposals. The �rst re-
quires a same person to drive a single vehicle model, and then analyzing all
the behaviors recorded during driving, as well as the instantaneous consump-
tion. The results of this test have been very signi�cant, as shown in Figure 4.6.
Notice that more aggressive driving behaviors cause consumption to increase
signi�cantly, liters of fuel, likewise increasing the generation of CO2.

Figure 4.8 displays the di�erences between quiet, normal, and aggressive driv-
ing behavior in terms of fuel consumption; aggressive drivers provoke fast starts
and quick accelerations, driving at high engine revolutions, and causing sudden
speed changes. Conversely, a quiet driving behavior would be smooth, without
sudden speed changes or continuos gear shifts. It is clear that fuel consump-
tion increases when the driver behavior becomes more aggressive, with average
di�erences of up to 1,5 liters per 100 km. Regarding CO2 emissions, they in-
crease by 50%, going from 10 to 15 Kg/100km, dependending on whether you
are a quiet or an aggressive driver, as shown in Figure 4.6.
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Figure 4.8: Box and wisker plot of Fuel Consumption / Driving Behavior.

The second battery of tests was performed using the same vehicle but with
di�erent drivers. Figure 4.7 shows the behavior of two drivers driving the
same vehicle. We can see that the behavior of both drivers is clearly di�erent,
being that the second driver clearly has a more aggressive behavior, and so
consumption is noticeably higher compared to the other driver.

As a result, we conclude that aggressive driving behaviors, besides being dan-
gerous and not recommended, can be economically expensive and ecologically
harmful. A trend towards aggressive driving behavior may actually increase
fuel costs by more than 20 %, not to mention that additional CO2 emissions
to the environment could be avoided.
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4.7 Conclusions and future work

Reducing energy consumption and greenhouse gas emissions requires drivers
to adopt an e�cient driving style. This paper presents our DrivingStyles plat-
form, which integrates mobile devices with data obtained from the Electronic
Control Unit (ECU) to determine the type of road where the driver is travel-
ing, as well as his driving habits. Using only an Android Smartphone and an
OBD-II adapter, it is possible for a driver to improve his driving behavior and
fuel e�ciency, motivating him to improve his driving behavior.

In this chapter, it has been demonstrated that the driving style is directly
related to fuel consumption. Speci�cally, adopting an e�cient driving style
allows achieving fuel savings ranging from 15 % to 20 %. An aggressive driv-
ing style always results in a greater energy consumption and CO2 emissions,
whereas smooth driving ends up providing a greater energy e�ciency as well
as reduced gas emissions.

The application, which is available for free download in the DrivingStyle's
website2 and in the Google Play Store3, has achieved more than 4500 downloads
from di�erent countries in just a few months.

As future work, we intend to extend this platform to provide driving recom-
mendations based on real-time feedback about the driver's health conditions
and the instant driving pattern.
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Abstract

Intelligent Transportation Systems (ITS) rely on connected vehicle applica-
tions to address real-world problems. Research is currently being conducted to
support safety, mobility and environmental applications. This paper presents
the DrivingStyles architecture, which adopts data mining techniques and neu-
ral networks to analyze and generate a classi�cation of driving styles and fuel
consumption based on driver characterization. In particular, we have imple-
mented an algorithm that is able to characterize the degree of aggressiveness
of each driver. We have also developed a methodology to calculate, in real-
time, the consumption and environmental impact of spark ignition and diesel
vehicles from a set of variables obtained from the vehicle's Electronic Control
Unit (ECU). In this chapter, we demonstrate the impact of the driving style on
fuel consumption, as well as its correlation with the greenhouse gas emissions
generated by each vehicle. Overall, our platform is able to assist drivers in
correcting their bad driving habits, while o�ering helpful tips to improve fuel
economy and driving safety.

5.1 Introduction

Intelligent Transportation Systems (ITS) introduce advanced applications aimed
at providing innovative services, o�ering tra�c management and enabling users
to be better informed, including support for safety, mobility, and environmental
applications. In parallel to ITS, mobile devices have experienced technological
breakthroughs in recent years, evolving towards high performance terminals
with multi-core microprocessors. The smartphone is a clear representative
outcome of this trend.

In addition, the On Board Diagnostics (OBD-II) [36] standard, available since
1994, has recently become an enabling technology for in-vehicle applications
due to the availability of Bluetooth OBD-II connectors. These connectors
enable a transparent connectivity between the mobile device and the vehicle's
Electronic Control Unit (ECU).

When combining high performance smartphones with OBD-II connectivity,
new and exciting research challenges emerge, promoting the symbiosis between
vehicles and mobile devices, and thereby achieving novel intelligent systems.
DrivingStyles implements a solution based on neural networks, which is ca-
pable of characterizing the driving style of each user [27], as well as the fuel
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Figure 5.1: System Architecture of DrivingStyles.

consumption [37]. In order to achieve this functionality, the data is obtained
from the ECU via the OBD-II Bluetooth interface, including the speed, accel-
eration, revolutions per minute of the engine, Mass Flow sensor (MAF), mani-
fold Absolute Pressure (MAP), and Intake Air Temperature (AIT). Currently,
this information can be collected and used in applications aimed at improving
road safety and promoting eco-driving, thus reducing fuel consumption and
greenhouse gas emissions. Speci�cally we �nd that, by shifting towards a more
e�cient driving style, users can save up to 20% of fuel while improving driving
safety, thereby reducing greenhouse gases as we detail later on.

This paper is organized as follows: in the next section we present some related
works. Section 5.3 introduces the DrivingStyles architecture (both the Android
and the server interface). Models for fuel consumption and CO2 emissions, are
described in more detail in section 5.4. The tuning of the neural network, along
with the obtained results, are presented in sections 5.5 and 5.6, respectively.
Finally, section 5.7 presents the conclusion of our work.
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5.2 Related Work

Technological advancements in the �eld of mobile telephony are making smart-
phones very powerful. This high computing power opens new and attractive
opportunities for research. When coupled with the eco-driving concept, it has
gained great signi�cance in recent years [38]. An example is the prototype of
an onboard unit developed by Hernandez et al. [39]. These driving techniques
save fuel consumption, regardless of the technology used inside the vehicle.
One of the main problems of eco-driving systems is identifying the factors that
a�ect energy consumption. Ericsson [18] suggests that, in order to save fuel,
sudden changes in acceleration and high speed driving should be avoided. Jo-
hansson et al. [19] suggest maintaining low levels of deceleration, minimizing
the use of the �rst and second gears, and putting every e�ort into using the
5th and 6th gears, while avoiding continuous gear changes.

There are several proposals that analyze which variables a�ect fuel consump-
tion. Kuhler [20] introduced a set of ten variables that are used in laboratories
for fuel consumption and vehicle emissions analysis. Other authors such as
André [21] improve these results by increasing and replacing some of the pa-
rameters. In previous works such as Leung [30] and COPERT III [31], di�erent
tools were developed to enable real-time collection of engine and vehicle pa-
rameters from the OBD connector.

Several commercial OBD-II scanner tools are available that can read and record
these sensor values. Apart from such scanners, remote diagnostic systems
such as GM's OnStar, BMW's Connected Drive, and Lexus Link are capable
of monitoring engine parameters from a remote location. Car manufacturers
used eco-monitoring to re�ect the instant, historical, and time-elapsed fuel
economy, and is used in the car through on-board trip computers [40]. Our
solution di�ers from all the previous ones by providing a real-time analysis of
the driving style of each user in the scope of eco-driving behavior, and based
on neural network techniques. By calculating the consumption and greenhouse
gas emissions generated by both types of engines (spark ignition, and diesel
vehicles), we are able to closely relate both results, detailing the fuel savings
achieved by soft driving patterns when compared to aggressive ones.
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5.3 DrivingStyles Architecture

Our proposed architecture applies data mining techniques to generate a clas-
si�cation of the driving styles of users based on the analysis of their mobility
traces. Such classi�cation is generated taking into consideration the character-
istics of each route, such as whether it is urban, suburban, or a highway, and
it is then correlated with the fuel consumption and emissions of each driver.

To achieve the overall objective, our system comprises four elements:

1. An application for Android, based smartphones. Using an OBD-II Blue-
tooth interface, the application collects control information (by default
every second, but it is con�gurable by the user) such as speed, acceler-
ation, engine revolutions per minute, throttle position, and the vehicle's
geographic position. In addition, we also obtain via OBD-II the mass �ow
sensor (MAF), the manifold Absolute Pressure (MAP), and the Intake
Air Temperature (AIT) that are used in the calculation of fuel consump-
tion. After gathering the information, the user can upload the collected
data to the remote data center for analysis.

2. A data center o�ering a web interface to collect large data sets sent by
di�erent users concurrently, and to graphically display a summary of the
most relevant results, like driving styles and route characterization of each
route sent. Our solution is based on open source software tools such as
Apache, PHP and Joomla R©.

3. A neural network, which has been trained using the most representative
route traces in order to correctly identify, for each path segment, the
driving style of the driver, as well as the segment pro�le: urban, subur-
ban or highway. We use the backpropagation algorithm [14], which has
proven to provide good results in classi�cation problems such as the one
associated to this project.

4. Integration of the tuned neural networks both within the mobile device
itself, and in the data-center platform. The goal is to use neural networks
to dynamically and automatically analyze user data, reporting to the
drivers in real time and allowing them to �nd out their driver pro�le,
thus promoting a less aggressive and more ecological driving.

The block diagram of the DrivingStyles architecture is shown in Figure 5.1b.
This consists of three blocks: the mobile application on a Android device, the
data center platform, and an On Board Diagnostics (OBD-II) device.
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The basic layer in the Android device is the Linux kernel, which contains all the
essential hardware drivers to interact with the OBD-II device via Bluetooth.
The top layer includes both Android's native libraries and our own libraries.
Speci�cally, we developed the OBD-II communications module, along with the
libraries for graphical data representation, at this layer. The next level up
is the Application Framework; this layer manages the basic functions of the
mobile device, and the communications with the developed libraries.

Finally, at the application layer, we developed the di�erent modules of the
DrivingStyles architecture, such as the fuel consumption and CO2 emissions
estimators, the neural networks behavior, GPS routes, and graphics. Also, the
application provides real-time feedback from the device to the user such that,
when it detects high levels of aggressiveness (above a certain threshold), the
device automatically generates an acoustic signal to alert the driver.

5.3.1 DrivingStyles Android Interface

The �rst step for a user is to register at http://www.drivingstyles.info, and
to download the free Android application. After installing the Android appli-
cation in the mobile device, and after connecting to the Bluetooth ELM327
interface inside the car (this connector is mandatory on all vehicles since 2001),
the data acquisition process will start (see Figure 5.1a).

The Android application is a key element of our system, proving connectivity
to the vehicle and to the DrivingStyles web platform. Currently, it can be
downloaded for free from the DrivingStyles website1, or from Google Play 2.

Once the mobile application is installed and con�gured, the user must pair the
mobile device with the ELM327 (OBD-II Bluetooth device) to start getting
data. The data obtained from the di�erent variables such as acceleration, en-
gine revolutions per minute (RPM), speed, mass �ow sensor (MAF), manifold
absolute pressure (MAP), and intake air temperature (IAT) are analyzed by
the application, showing users the characteristics related to their driving, fuel
consumption, and CO2 emissions.

In order to adjust the application functionality, it o�ers several con�guration
options, i.e., User creation, Connection options, GPS Activation, Sensor sam-
pling, and type of fuel de�nition. Once con�gured, our application captures
data sent by the OBD-II and the GPS interfaces, as well as the phone's ac-
celerometer showing the monitored sensors, and performing several monitoring

1http://www.drivingstyles.info
2https://play.google.com/store/apps/details?id=com.driving.styles
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Figure 5.2: Snapshots of the fuel consumption, speed, acceleration parameters, and map
module for the Android application.

actions in real time without a�ecting the data captured. Figure 2, shows some
snapshots of our DrivingStyles application.

In addition, routes traces can also be sent to the website data center for fur-
ther analysis. This module can be accessed either from the historic stored
routes, or immediately after stopping the data capture. The information
screen displays the header information of the selected route, such as: (i) date
of the captured data, (ii) start time, (iii) �nish time, (iv) maximum speed,
and (v) fuel consumption. The URL of the DrivingStyles web interface is
http://www.drivingstyles.info.

5.3.2 DrivingStyles Server Interface

The second main component of our architecture corresponds to the data center
and its web interface. To implement this component, we have selected open
source software such as Apache HTTP, and Joomla R©as the Content Man-
agement System (CMS). We have used a CMS, combined with the use of a
resource wrapper, which detachs our system from the presentation layer, thus
focusing on the driving styles characterization problem. This module can be
found in http://www.drivingstyles.info.

Basically the server receives data sent from the Android application of each
user, and it provides functionality to work with User, Routes, and Statistics.
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Once the user is logged in, he is asked to record a number of important data,
especially for future data mining studies. The most relevant items are sex, age,
and other details concerning the vehicle used: car manufacturer, model, fuel
type, and the theoretical 0-100 acceleration level (important to normalize the
user behavior in our study).

In the Routes' section, users can access all the routes they have uploaded.
When selecting car/body sensors, the system displays nine graphs for the dif-
ferent sensors obtained from the OBD-II (direct and indirect variables), as well
as the route and driver behavior (see Figure 5.3). Next, we present our fuel
consumption estimation approach relating it with the driver style as captured
by the DrivingStyles platform.
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Figure 5.3: Snapshots of driver behavior and route type corresponding to the data center
web.

5.4 Fuel consumption and greenhouse gas emissions
calculation

5.4.1 Fuel consumption

Fuel consumption is usually represented as the ratio of fuel consumed per
distance travelled, being measured in terms of litres per 100 kilometres (or
alternatively as MPG-miles per gallon).

In this work, we focus on gasoline and diesel engines. Although the basic
designs of gasoline and diesel engines are similar, the mechanics are di�erent.
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A gasoline engine compresses its fuel and air charge and then initiates com-
bustion by the use of a spark plug. A diesel engine just compresses air until
the combustion chamber reaches a temperature for self-ignition to occur. So,
at a given speed in kilometres per hour, instantaneous fuel consumption can
be calculated as follows:

Inst. Fuel Consump. [l/km] =
Fuel F low [l]

Speed [km]
(5.1)

Notice that it can only be calculated when the vehicle is moving and the
engine is operating.

In addition, the Fuel Flow PID must be available, which often does not oc-
cur since most vehicles fail to support all the standard OBD PIDs. In fact,
although there are many manufacturer-de�ned custom PIDs (not part of the
OBD-II standard), the OBD standard itself does not provide a fuel consump-
tion parameter. Instead, it provides other values that enable its calculation.
Depending on the variables that the ECU can supply, the mathematical pro-
cedure to derive fuel consumption is di�erent, as described below (see Figure
5.4) :

1. By combining the Engine Fuel Rate (PID 015E), also known as Fuel Flow
(litres/hour), and Speed (PID 010D), it is easy to calculate instantaneous
fuel consumption. However, while speed is mandatorily available, fuel
rate is not. In fact, it was unavailable in all vehicles we used to carry out
our tests. This can be due to two reasons: (i) the manufacturer chooses
not to make it available, or (ii) there is no sensor inserted in the fuel line
between the fuel tank and the engine carburetor to measure litres per
hour.

2. If the MAF PID is available, but the Engine Fuel Rate is not, we can
calculate fuel rate as Fuel Flow (litres/hour) by dividing the Mass Air
Flow (PID 0110) · 3600 sec. by the product of air-to-fuel ratio and Fuel
Density (using a fuel density equal to 820 g/dm3 for gasoline and 720
g/dm3 for diesel):

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD (5.2)
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Figure 5.4: Scheme of the di�erent MAF calculation possibilities regarding fuel consump-
tion calculation.

where MAF refers to Mass Air Flow (g/s), AFRA to the actual Air-to-
Fuel Ratio (being 14.7 and 14.5 grams of air to 1 gram of fuel for gasoline
and diesel respectively), and FD to the Fuel Density. The ratio between
Fuel Flow and Speed, allows us to directly calculate fuel consumption.

3. Finally, If MAF is not available , there are two additional ways to calculate
it (See [41] for more details):

• As a function of the Absolute Load (PID 0143), the RPM (PID 010C)
and the Engine Displacement (EngDisp, volume of an engine's cylinders
in cm3), Intake stroke is the �uid admission phase of a reciprocating
cylinder.

• As a function of the Intake Manifold Pressure (PID 010B), RPM (PID
010C), Intake Air Temperature (PID 010F), and Engine Displacement.
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5.4.2 Greenhouse gas emissions calculation

The most signi�cant greenhouse gases are generated from direct combustion
of carbon dioxide CO2, Methane (CH4), and Nitrous oxide (N2O), among
others. CO2 is always generated when burning fuel that contains carbon.
Since the carbon in the fuel is combined with the oxygen in the air: C +
O2 → CO2, the amount of CO2 can be calculated by the atomic masses of
carbon and oxygen, and the carbon content of the fuel. The atomic mass of
carbon is 12U and oxygen is 16U , meaning that CO2 = 12U + 2 · 16U =
44U . Burning 1kg of carbon produces 44/12 ≈ 3.67kg of CO2 in complete
combustion, and so the CO2 emission of combustion is 3.67 · Cc · mfuel where
Cc = fuel carbon content (mass basis). Considering that the carbon content
of diesel fuel is 85.7 % the CO2 emission when burning 1kg (mfuel = 1kg) of
diesel fuel is:

mCO2
= 3.67 · Cc · mfuel

mCO2
= 3.67 · 0.857 · 1 [kg] = 3.15 [kg/1kg fuel]

Density of diesel fuel is 0.84 [kg/l]

mCO2
= 3.15 · [kg] · 0.84 = 2.64 [kg/1l fuel] (5.3)

Driving in a fuel-e�cient manner can save fuel, money, and reduce greenhouse
gas emissions. Among the factors that can a�ect fuel consumption, such as:
vehicle age and condition, outside temperature, weather, and tra�c conditions,
we consider that driver behavior can be one of the most relevant parameter.
Next, we provide detailed information about the neural network we proposed
for characterizing driver styles.

5.5 Neural Networks-based data analysis

Neural networks [13] use arti�cial intelligence and automatic processing tech-
niques to learn how to �nd patterns in data, thereby improving their success
rate at making decisions of predictions. A learning algorithm is used to gen-
erate the neural network. For example, the driving style of each user and the
type of route can be characterized from a well-de�ned set of rules and the ECU
input variables.

There are many di�erent learning algorithms such as backprop_momentum,
Hebbian, or delta-rule, each one having its own advantages and disadvantages
depending on the type of problems. In our project, we face a classi�cation

64



5.5 Neural Networks-based data analysis

H1

W1jSpeed AVG

W2jSpeed STD

W3jAccel AVG

W4jAccel STD

W5jRpm AVG

W6jRpm STD

H3

H9

H2

H5

H7

H8

H6

H4

O3 City

O1 Suburban

O2 Highway

Input Layer

Hidden Layer

Output Layer

WeightsInputs

(a) Three-layer Neural Network Route Type

H 1

W 1jSpeed AVG

W 2jSpeed STD

W 3jAccel AVG

W 4jAccel STD

W 5jRpm AVG

W 6jRpm STD

H 3

H 9

H 2

H 5

H 7

H 8

H 6

H 4

O 3 Aggresive

O 1 Quiet

O 2 Normal

Input Layer

Hidden Layer

Output Layer

WeightsInputs

(b) Three-layer Neural Network Driving Style Type

Figure 5.5: Schematic representation of the Three-layer Neural Networks used in the Driv-
ingStyles Architecture.

problem: starting from some input data, which in our case are the speed,
acceleration, and revolutions per minute (rpm) of the engine, we intend to
obtain as outputs the type of road and the driving style. The problem of
classifying the driver behavior and the route type with a supervised learning
is to �nd a function that best maps a set of inputs to its correct output. We
tried several types of algorithms in this direction, including backpropagation,
backprop-momentum, and batch backpropagation, and the results evidenced
that backpropagation [14, 26] was the best algorithm for our study since it
achieved the lowest sum of squared errors (SSE) in terms of prediction.

A data preprocessing stage is selected from all the possible input variables of
the neural network. From all the possible data, we keep a subset of these vari-
ables. In practice, this subset is not the minimum; instead, it is a compromise
between a manageable number (not too large) of variables and an acceptable
network performance. In this work, after considering the many variables that
can be obtained from the Electronic Control Unit (ECU), we have chosen to
train the neural network using: the mean and standard deviation of speed, the
vehicle acceleration, and the rpm value.

In all the vehicles used for testing, these variables are easily obtained. Other
variables, such as the position of the throttle, which would provide important
information for the neural network training, have to be rejected because not all
manufacturers provide such information. The data input of each parameter is
normalized between 0 and 1; this normalization should take into consideration
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the range of possible values. The schematic representation of our three-layer
neural network can be seen in Figures 5.5a, and 5.5b.

The application used for the creation and training of the neural networks re-
quired by this project is JavaNNS [15], a java version of the SNNS program
from the University of Tüubingen3.

First, an empty neural network was created, de�ning the number of entries
mentioned previously, and the number of hidden nodes. A larger number of
hidden nodes can improve the success rate, but has the negative e�ect of in-
creasing the response time. On the contrary, with a large number of nodes, the
network becomes a memory bank that can recall the training set to perfection,
but does not perform well on samples that were not part of the training set.
There are three output nodes for each neural network, one that characterizes
the type of road (urban, suburban, or highway), and another one that charac-
terizes the user's driving style (quiet, normal, or aggressive), see Figures 5.1a
and 5.1b respectively.

Subsequently, we train the network with a total of 16038 samples, each rep-
resenting a 3-second drive period (13.3 hours in total belonging to 7 drivers
of di�erent ages and sex). We initially adjust the learning rate to learning
intervals of 0.2, and then modify this value to observe how the error a�ects the
neural network (JavaNNS application [15] computes the mean square error in
each learning iteration). The higher the learning rate, the greater the weight
updating following each iteration; therefore, learning becomes faster, but it is
prone to cause unwanted oscillations in the network. As the network training
progresses, the number of learning cycles that take place in the tests is adjusted
until the �nal trained network is obtained.

Once the neural network was successfully trained, the knowledge obtained was
converted into C code, and this code was then integrated into our DrivingStyles
platform. With the neural network already implemented, every time a route or
route segment is selected, the system automatically returns the type of road,
as well as the associated driving style. Figure 5.3 shows the results obtained
by our neural network including the driving styles and route characterization
of a particular route of one of our users.

Overall, with di�erent traces analyzed, along with the drivers using our appli-
cation, we have shown a correct classi�cation of the di�erent routes registered,
both in terms of route types and driving styles, thus validating our proposed
solution.

3https://www.uni-tuebingen.de/en/university.html
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Figure 5.6: Chart of consumption and CO2 in relation to the driving behavior.

5.6 Experimental results and evaluation

In our project, we focus on characterizing the driving style of di�erent drivers,
and then measuring the associated fuel consumption variations. In order to
achieve this objective, we rely on the collaboration of 534 drivers from around
the world using our platform, including countries like India, Brazil, Central
America, and Europe. In this particular study, we analyzed the behavior
of 75 representative routes (each divided into 10 second periods) using the
neural network described earlier. For each section, the neural network returns
the corresponding driver behavior, and we combine this data with the fuel
consumption data corresponding to that route.

We carried out several types of tests to validate our proposals. Figure 5.6 shows
the fuel consumption and CO2 emissions reported by di�erent drivers classi�ed
according to their driving style. The results of this test show that a more
aggressive driving behavior causes fuel consumption to increase signi�cantly,
while also increasing the generation of CO2. To gain further insight into these
correlations, Figure 5.7 displays the di�erences between quiet, normal, and
aggressive driving behavior in terms of fuel consumption; aggressive drivers
provoke fast starts and quick accelerations, driving at high engine revolutions,
and causing sudden speed changes. Conversely, a quiet driving behavior would
be smooth, without sudden speed changes or continuous gear shifts. It is
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clear that fuel consumption increases when the driver behavior becomes more
aggressive, with average di�erences of up to 1.5 liters per 100km. In our
experiments, an aggressive driver uses an average of 8 liters per 100km, and
a quiet driver only 6.6 liters per 100km, meaning that the di�erence in terms
of fuel consumption is not negligible, as the former may consume up to 20 %
more fuel depending on the driving style. Regarding CO2 emissions, they may
increase by 50%, going from 10 to 15Kg/100km, depending on whether drivers
are quiet or aggressive.

5.7 Conclusions and future work

This paper presents our DrivingStyles platform, which integrates mobile de-
vices with data obtained from the vehicle's engine Electronic Control Unit
(ECU) to characterize driver habits, as well as the associated fuel consump-
tion and emissions. Our platform helps to promote a more ecological driving
style by emphasizing on the relationship between driving style and fuel con-
sumption, which has a clear and direct impact on the environment. It has
been also demonstrated that the driving style is directly related to fuel con-
sumption. Speci�cally, adopting an e�cient driving style allows achieving fuel
savings ranging from 15% to 20%. An aggressive driving style always results in
a greater energy consumption and more CO2 emissions, whereas smooth driv-
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Abstract

Driving safety is of utmost importance in our society. The number of fatalities
due to car accidents is still very high, and reducing this trend requires as much
attention as possible. There are situations where the emotional conditions of
drivers vary due to either reasons beyond their control, or because they decide
to change their driving style. Hence, we consider that such frequent situations
deserve more scrutiny.

In this chapter we designed an Android application able to monitor in real-time
both physiological data from the driver and diagnostic data from the vehicle
to study their correlation. More speci�cally, we study the connection between
driving aggressiveness and heart rate. The vehicle diagnostic data is obtained
using an OBD-II connector. Among the various non-invasive biomedical sen-
sors available nowadays, in this work we focus on heart rate sensors, either
packaged in belts or in smartwatches.

6.1 Introduction

It is known that prolonged or repeated stress, such as long tra�c jams or driv-
ing on severely congested roads, is related to increased aggressiveness. In fact,
authors like Gibson [42], Cohen [43], and Gravina et al. [44, 45] have identi�ed
a potentially dangerous aggressiveness level as a result of driver stress. Thus,
any method or system that can help at lowering the levels of aggressiveness
when driving is welcome.

Our proposal just needs basic devices, such as a mobile phone, and an On Board
Diagnostics (OBD-II) device [1, 4, 10], available for less than 20 dollars, along
with a heart rate band or a smartwatch. Our novel DrivingStyles architecture
adopts data mining techniques and neural networks to analyze and generate a
classi�cation of the driving styles based on an analysis of the characteristics of
the driver along the route followed. It ensures that the driver can be constantly
aware of its level of aggressiveness and driving stress, and how this a�ects to his
heart rate. In a previous study [37], we developed a methodology to calculate,
in real-time, the impact that the driving style will have on the consumption and
environmental impact of spark ignition and diesel vehicles. We demonstrated
that an aggressive driving style increases the fuel consumption, as well as the
emission of greenhouse gases.
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driving behavior also leads to a heart rate increase of at least three beats per
minute with respect to a quiet behavior. The analysis has been carried out
with 460 minutes of driving, taking 27663 direct samples (obtained from the
vehicle's ECU and the driver's heart rate band), which corresponds to 5532
time windows where the driver behavior and road types are analyzed. Our
platform is able to assist drivers in correcting their bad driving habits, while
o�ering helpful recommendations to improve fuel economy, and driving safety.

This paper is organized as follows: in the next section we present the Driv-
ingStyles architecture. The method used for the analysis of the variables is
presented in section 6.3. We present experimental results in section 6.4. Fi-
nally, in section 6.5, we review the main conclusions and discuss future work.

6.2 General Overview of the DrivingStyles Architecture

Our proposed architecture applies data mining techniques to generate a classi�-
cation of the driving styles of users based on the analysis of their mobility traces
using neural networks. Such classi�cation is generated taking into considera-
tion the characteristics of each route, such as whether it is urban, suburban,
or highway. To achieve the overall objective, the system is structured around
the following two elements:

1. An application for Android-based smartphones which is responsible for
collecting data from the car and the driver's heart rate band or smart-
watch, which also analyzes routes and driver behavior using neural net-
works.

2. A cloud-based data center to collect large data sets sent by di�erent users
concurrently. Subsequently, these data are analyzed using data mining
and expert systems, in order to generate useful information.

6.2.1 Android Application

Using an OBD-II Bluetooth interface, the Android application (see Figure
7.1b) collects information such as speed, acceleration, engine revolutions per
minute, throttle position, and the vehicle's geographic position. It also obtains
information from a wearable heart rate monitor, chest belts and smartwatches.
This information is analyzed on the device itself, performing the analysis of
driver behavior and road type (using neural networks), instantaneus fuel con-
sumption, greenhouse gas emissions, and heart rate measurement.
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Figure 6.1: System architecture of DrivingStyles: Overview and block diagram architec-
ture.

We then provide feedback from the device to the user in a way that, when the
application detects high levels of aggressiveness, (above a certain threshold),
the device generates an acoustic signal to alert the driver. Furthermore, if the
user has a wearable device, such as a smartwatch, it is noti�ed by a vibration
event as well.

Eventually, the user uploads the route data to the remote data center for
a more comprehensive analysis. The Android application is a key element
of our system, proving connectivity to the vehicle and to the DrivingStyles
web platform. The application, which is available as a free download in the
DrivingStyle's website1 and from Google Play Store2, has achieved nearly 6000
downloads from di�erent countries in just one year. This indicates the great
interest of this type of user-level applications. For more detailed information
please refer to [27, 37].

1http://www.drivingstyles.info
2https://play.google.com/store/apps/ details?id=com.driving.styles

74



6.3 Research Strategy and Methodology

6.2.2 Data Center

Our data center3 is able to collect large data sets sent by di�erent users (see
Figure 7.1a). There are currently 485 registered users and 411 routes sent for
study. The data center allows users and administrators to access data about
routes and per-user statistics. In particular, users can access all the routes
they have uploaded.

6.3 Research Strategy and Methodology

We now present the methodology we have followed in order to correlate driving
aggresiveness and driver heart rate by using the data provided by our Driv-
ingStyles architecture.

6.3.1 Participant

The data reported in the present study were collected from a 35 years old
male driver, without heart deseases, and whose heart rate while at rest lies
between 70 bpm (beats per minute) and 75 BMP. We have analyzed twenty-
one routes of varying durations, and under completely di�erent environments
(urban, suburban or highway), and also at di�erent weather conditions (rainy,
sunny, cloudy, etc.) and road conditions. This diversity allowed us to analyze
the system reliability under di�erent environmental conditions [46].

The driver was equipped with an Android device with our DrivingStyles appli-
cation, and a heart rate band (brand Geonaute, although any other compatible
band could be used as well) attached to the driver's chest.

6.3.2 OBD-II Instrument

The vehicle used for testing is a gasoline model of the KIA brand with manual
transmission. It was instrumented with an interface compatible with the On
Board Diagnostics (OBD-II) standard [1, 4], available since 1994 [10], and that
has recently become an enabling technology for in-vehicle applications due to
the appearance of Bluetooth OBD-II connectors [9, 10]. These connectors
enable a transparent connectivity between the mobile device and the vehicle's
Electronic Control Unit (ECU).

3http://www.drivingstyles.info
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6.3.3 Heart Rate Monitor (HRM)

Regarding heart rate monitor (HRM) devices, there are mainly two types on
the market: the smartwatch (or other wrist band) and the chest strap. Smart-
watch models tend to be less accurate than chest-strap HRMs. Tests were
conducted with di�erent models of both types. The �rst devices used were
wrist devices, including the Motorola 360 smartwatch. In this model the back
of the watch hosts the heart rate sensor. Despite using oximeter technology
pulse measurement, in our tests, the sampling frequency of the smartwatch
was too low and, in combination with the high battery consumption when the
heart rate measurement is activated, made us disregard this device from the
beginning. So, we opted for the heart rate belt device instead.

Figure 6.2: Snapshots of the main screen and the heart rate module.

Heart rate belt operation is simple, an electrical signal is transmitted through
the heart muscle in order for it to contract. This electrical activity can be
detected through the skin. The transmitter part of the heart rate monitor is
placed on the skin around the area that the heart is beating, and picks up this
signal. The transmitter then sends an electromagnetic signal containing heart
rate data to the wrist receiver which displays the heart rate.
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Table 6.1: Mean, standard deviation, and range of route time, speed, and heart rate.

Mean SD Range
Route time (minutes) 24.63 26.37 6.32− 81.44
Speed (km/h) 67.44 41.30 0− 135
Heart rate (bpm) 79.73 10.87 55− 115

As we can see in Figure 7.3, the Android app displays the heart rate in real-
time, as well as a map representation of the heart rate compared with the
average of the route undertaken so far, being red if it is higher than average,
and green otherwise. It is mandatory that the mobile device used supports
Bluetooth Low Energy (Bluetooth LE, BLE) to connect with the heart rate
monitor.

6.3.4 Measurement Result.

The total time of the twenty-one routes considered for this study has been 7
hours and 40 minutes (460 minutes). Regarding the heart rate, 27663 direct
samples (one sample every second) have been obtained. Also 5520 driving
behavior measures calculated by the neural network have been used in the test,
re�ecting the behavior of the driver at measurement time (behavior analysis
is performed with data from 5 seconds before performing the calculation). See
Table 6.1 for further information.

Before performing the statistical calculations, the samples were normalized
between 0 and 1. The neural network developed returns a value between 0 and
100, as a result of analizing each type of behavior. These values must also be
normalized before the statistical study.

In Section 6.4 we proceed to analyze the correlation between driving behavior
and the driver's heart rate.

77



Chapter 6. DrivingStyles: Assessing the Correlation of Driving Behavior with Heart Rate Changes

Table 6.2: Slope-intercept form equation of single route and all routes.

Behavior single route y m R2 R
Quiet-Normal 8.692x+ 72.72 8.692 0.172 0.414
Normal-Aggressive 5.667x+ 74.049 5.667 0.041 0.203
Quiet-Normal-Aggressive 6.937x+ 73.362 6.937 0.173 0.416
Behavior all routes y m R2 R
Quiet-Normal-Aggressive 2.959x+ 76.557 2.959 0.005 0.071

6.4 Experimental Results and Evaluation

We can assume that drivers can be exposed to higher levels of stress during
rush-hours in a city [47]. Similarly, the sparsest tra�c conditions can be found
on country side roads, driving on highways or in sparsely populated areas.
Hence, these two conditions should represent the far ends that we should �nd
in the routes under analysis.

Our study is based on a set of twenty-one di�erent routes made by the same
driver on a same vehicle in an attempt to eliminate these factors, and focuses
solely on the relation between driving aggressiveness and heart rate. Then, we
focus on a particular route to have a more in-depth perspective of the results
obtained and the overall �ndings. In both cases, we obtain through linear
regression the line that better describes the correlation between both data
sets. This way, a positive gradient shall validate our assumption of a positive
correlation between driver behavior and heart rate, as intended.

6.4.1 On-road Tests (all routes).

First, we analyzed the twenty-one routes mentioned previously in section 6.3.4.
The total time of all these routes is 460 minutes of driving, which corresponds
to a total of 27663 direct samples and 5532 behavior samples calculated by the
system. Notice that the developed neural network evaluated the three types
of driver behavior at once, generating an output score for each that allows
generating an output in the range from 0 to 1.

Figures 6.3 and 6.4 show the correlation plots between heart rate and behavior
of the 27663 samples obtained for the study. Table 6.2 shows the equation
of the corresponding slope-intercept form, where the slope given by m, which
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Figure 6.3: Correlation between heart rate and driving behavior.

equals to 2.959, and the y-intercept by b, which is equal to 76.557 (see Figure
6.3). As it can be observed, the intended correlation between driving styles and
heart rate R is 0.071. The correlation value obtained is not as signi�cant when
compared to result for a particular route, as shown in the following section.

These results were mostly expected since the driver remains seated in all cases,
and so the additional physical burden requiring a higher heart beat is not com-
parable to more demanding situations. It is noteworthy mentioning, though,
that in this section we are studying routes of many types, some from urban
scenarios and other from highway scenarios, being the behavior less aggressive
for the latter. So, overall, we �nd that the di�erence between a quiet behav-
ior and an aggressive behavior for a speci�c driver is a heart rate increase of
3, 72 %. Figure 6.4 shows the box and wisker plot of heart rate vs driving be-
havior. We �nd that the di�erence in heart rate between quiet and aggressive
behavior is 3, 25 % (about three beats per minute).

6.4.2 On-road Tests (single route).

In this second part of the analysis, we study a speci�c route chosen from the
set of twenty-one routes analyzed in this chapter. The DrivingStyles platform,
in addition to analyzing the behavior, is also able to compute the route type.

In particular, this route has a duration of 6 minutes and 33 seconds, circulating
at an average speed of 24 km/h and a maximum speed of 57 km/h, covering a
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Figure 6.4: Box and wisker plot of heart rate vs driving behavior.

total of 2.17km; this corresponds to 381 behavior type samples, also including
data about the driver's heart rate that we use in the statistical analysis.

After normalizing the data as explained in section 6.3.4, we split our analysis
into three parts: the di�erence in terms of heart rate between quiet and normal
behavior (see Figure 6.5), the same di�erence between normal and aggressive
behavior (see Figure 6.6), and a full comparison between quiet, normal, and
aggressive driving (see Figures 6.7 and 6.8):

1. Concerning the �rst case study i.e., when comparing the heart rate be-
tween a quiet behavior and normal behavior (see Figure 6.5), we �nd
that the linear trendline has a positive slope (8.69) and the R− squared
value or coe�cient of determination is 0.17 (how close the data are to the
�tted regression line). As shown in this �gure, there is a clear correlation
between heart rate and driver behavior, being the heart rate when the
system detects normal behavior about 10.67% higher compared to a quiet
behavior.

2. In Figure 6.6 we compare the normal driver behavior against an aggressive
behavior for the same route. We �nd that the slope of the regression line
is lower than for the plot previously discussed (quiet behavior vs normal
behavior), having a value of 5.66, being the coe�cient of determination
signi�cantly lower, with a value of 0.04. Observing both plots (see Figures
6.5 and 6.6), we �nd that, regarding the outputs of the neural network
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Figure 6.5: Correlation between heart rate and driving behavior (quiet-normal).

implemented, the computation of the driver's behavior tends to provide as
outcome that is either a quiet behavior or an aggressive behavior in most
cases, being intermediate values more scarce. In this case, the heart rate
di�erence is 7.20 % higher between aggressive behavior and the normal
behavior.

3. In the third scenario, all the system's outputs were jointly analyzed (see
Figures 6.7 and 6.8). We �nd that the linear trendline remains positive,
being the slope value of 6.93, and the coe�cient of determination is 0.17.
In this last analyzed case the di�erence between a quiet behavior and an
aggressive behavior is 8.61 %. The results obtained are very similar to
the �rst plot (see Figure 6.5), which leads us to consider whether it would
be interesting, in future studies, to train the neural network to have only
two outputs instead: quiet behavior and aggressive behavior.

Finally, the box and whisker plot (see Figure 6.8) displays the di�erences be-
tween quiet, normal, and aggressive driving behavior vs heart rate; for this
test subject, an aggressive driving provoked an increased heart rate. If we
look at the value of the median in the three types of behavior (quiet, normal
and aggressive) we see that the di�erence in heart rate between a quiet and
normal behavior is 2.78 % (about two beats per minute); similarly, between a
normal and an aggressive behavior, this di�erence is 2.41 % (about two beats
per minute as well). Summarizing, according to our �ndings, the driver's pulse
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Figure 6.6: Correlation between heart rate and driving behavior (normal-aggressive).

increased by 5.18 % (slightly more four beats per minute) when the driver
switched to a more aggressive driving compared to a quite driving style.

6.5 Conclusions and Future Work

In this chapter we studied the correlation of the driver heart rate with respect
to his driver behavior. We based our study on the use of our novel Driv-
ingStyles architecture, that combines new technologies such as smartphones
and wearable body sensors with the modern software implementations of arti-
�cial neural networks.

The results of the present study indicated that aggressive driving causes an
increase in the heart rate, being able to rise it by up to three beats per minute
on average. Based on our experimental results, we have reached the conclusion
that the di�erence in terms of heart rate between a quiet and aggressive be-
havior can become very noticeable. In statistical terms, we also found that, as
the number of samples increases, the correlation between the driver behavior
and heart rate becomes lower. This was expected since increasing the number
of routes whose behavior is largely quiet, makes the percentage of values with
an aggressive behavior to decreases, i.e., an urban route that causes stress and
aggressiveness will get closer to our results that a long highway route where
the stress is non-existent or scarce. Since this study has been conducted taking
a middle-aged male subject as reference, in future works we will expand the

82



6.5 Conclusions and Future Work

Figure 6.7: Correlation between heart rate and driving behavior.

Figure 6.8: Box and wisker plot of heart rate vs driving behavior.
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scope of our study to women, and also to drivers of di�erent ages, which will
help at covering a wider range of possible cases. This will allow us to study
the di�erences between various age segments, as well as to di�erentiate driving
aggressiveness and heart rate based on the driver's gender.
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Abstract

Driving safety is of utmost importance in our society. The number of fatalities
due to car accidents is still very high, and reducing this trend requires as much
attention as possible. There are situations where the emotional conditions of
drivers vary due to reasons beyond their control, or because they decide to
change their driving style. Hence, we consider that such frequent situations
deserve more scrutiny. In this work we addressed such issues by designing an
Android application able to monitor in real-time both physiological data from
the driver and diagnostic data from the vehicle (this data is obtained using an
OBD-II connector) to study their correlation.

Among the various non-invasive biomedical sensors available nowadays, we
have adopted heart rate sensors, either packaged in belts or in smartwatches.
This allows studying the relationship between driving aggressiveness and heart
rate. For our analysis we focused on fourteen di�erent routes accounting a total
driving time of 6 hours and 2 minutes, which we have split into three separate
categories: urban, suburban, and highway routes. We analyzed the correlation
between the heart rate and the driving style for each of the three groups. Our
experiments show that the di�erences in terms of heart rate between quiet and
aggressive behavior range between 2.5 % and 3 % beats per minute higher for
the latter behaviour compared to the former.

7.1 Introduction

It is known that prolonged or repeated stress, such as long tra�c jams or
driving on severely congested roads, is related to increased aggressiveness. In
fact, authors like Gibson [42], Cohen [43], and Gravina et al. [44, 45] have
identi�ed a potentially dangerous aggressiveness level as a result of driver stress
[48, 49]. Thus, any method or system that can help at lowering the levels of
aggressiveness when driving is welcome.

Recently, the smartphones have become ubiquitous, allowing to perform all
types of tasks using both internal and external sensors connected wirelessly.
In addition, access to the vehicles Electronic Control unit (ECU) was made
possible through the availability of cheap On Board Diagnostics (OBD-II) de-
vices [1, 4, 11], thus enabling a seamless vehicle-smartphone integration. Such
integration paves the way for novel strategies in terms of driving style analysis,
providing a detailed feedback about the driver actions upon the vehicle.
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In this chapter we focus our analysis on the correlation between driving style
and driving stress measured as variations in the driver's heartbeart. To accom-
plish this goal we rely on our novel DrivingStyles architecture, which adopts
data mining techniques and neural networks to analyze and generate a clas-
si�cation of the driving styles based on an analysis of the characteristics of
the driver along the route followed. It ensures that drivers can be constantly
aware of their level of aggressiveness and driving stress, and how this a�ects
to their heart rate [13, 14]. In a previous study [37], we developed a method-
ology to calculate, in real-time, the impact that the driving style will have on
fuel consumption, and the environmental impact of spark ignition and diesel
vehicles [20]. We demonstrated that an aggressive driving style increases the
fuel consumption, as well as the emission of greenhouse gases [19, 50].

In this chapter we go one step forward and demonstrate that a more aggressive
driving behavior also leads to a heart rate increase between 2.5% and 3% beats
per minute with respect to a quiet behavior. The analysis has been carried out
based on traces that correspond to 371 minutes of driving, taking 22290 direct
samples (obtained from the vehicle's ECU and the driver's heart rate band),
where the driver behavior and road types are analyzed. Our platform is able
to assist drivers in correcting their bad driving habits, while o�ering helpful
recommendations to improve fuel economy and driving safety. In terms of
requirements, only o�-the-shelf devices such as a mobile phone and an OBD-II
device, along with a heart rate band or a smartwatch, are required.

This paper is organized as follows: in the next section we present the Driv-
ingStyles architecture. The method used for the analysis of the variables under
study is presented in Section 7.3. Experimental results are then presented in
Section 7.4. Finally, in Section 7.5, we review the main conclusions and discuss
future work.

7.2 General Overview of the DrivingStyles Architecture

Our proposed architecture applies data mining techniques to generate a classi�-
cation of the driving styles of users based on the analysis of their mobility traces
using neural networks. Such classi�cation is generated taking into considera-
tion the characteristics of each route, such as whether it is urban, suburban,
or highway. To achieve the overall objective, the system is structured around
the two following elements:
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Figure 7.1: System architecture of DrivingStyles: Overview and block diagram.

1. An application for Android-based smartphones, which is responsible for
collecting data from the car and the driver's heart rate band or smart-
watch, and that also analyzes routes and driver behavior using neural
networks.

2. A cloud-based datacenter to collect large data sets sent by di�erent users
concurrently. Subsequently, these data are analyzed using data mining
and expert systems, in order to generate useful information.

7.2.1 Android Application

Using an OBD-II Bluetooth interface, the Android application (see Figure
7.1.b) collects information such as speed, acceleration, engine revolutions per
minute, throttle position, and the vehicle's geographic position. It also obtains
information from a wearable heart rate monitor, chest belts, and smartwatches.
This information is analyzed on the device itself, performing the analysis of
driver behavior, and road type (using neural networks), instantaneus fuel con-
sumption, greenhouse gas emissions, and heart rate measurement.
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We then provide feedback from the device to the user in a way that, when
the application detects high levels of aggressiveness (above a certain threshold
which can be con�gured from the application settings), the device generates
an acoustic signal to alert the driver. Furthermore, if the user has a wearable
device such as a smartwatch, it is noti�ed through a similar vibration event.

Eventually, the user uploads the route data to the remote data center for a
more comprehensive analysis. For more detailed information please refer to
[27, 37].

7.2.2 Data Center

Our data center1 is able to collect large data sets sent by di�erent users (see Fig-
ure 7.1.a). It allows users and administrators to access data about routes and
provides per-user statistics. To implement this component, we have selected
open source software such as Apache HTTP, and Joomla R© as the content
management system (CMS).

Basically, the server receives data sent from the Android application of each
user, and it provides functionality to work with User, Routes, and Statistics.
Once the user is logged in, he is asked to record a number of important data,
especially for future data mining studies. The most relevant items are sex, age,
and other details concerning the vehicle used: car manufacturer, model, and
fuel type, among others.

7.3 Research Strategy and Methodology

We now present the methodology we have followed in order to correlate driving
aggresiveness and driver heart rate by using the data provided by our Driv-
ingStyles architecture.

7.3.1 Participant

In this study we have relied on fourteen routes (total of 6 hours and 11 minutes)
of varying duration carried out by a single subject in completely di�erent
environments (urban, suburban or highway), and for di�erent road weather
conditions (rainy, sunny, and cloudy). This scenario diversity allowed us to
analyze the system reliability under in di�erent situations [46], thus achieving
a higher con�dence on results.

1http://www.drivingstyles.info
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Figure 7.2: On Board schema components of DrivingStyles instrumentation.

The data reported in the present study were collected from a 36 year-old male
driver, without heart deseases, and whose heart rate while at rest lies between
70 BMP (beats per minute) and 75 bpm. The driver was equipped with an
Android device running our DrivingStyles application, and a heart rate band
(brand Geonaute, although any other compatible band could be used as well)
attached to the driver's chest.

7.3.2 OBD-II Car Instrument

The vehicle used for testing is a gasoline KIA model with manual transmission.
It was instrumented with an interface compatible with the OBD-II standard
[1, 4], available since 1994 [11], and that has recently become an enabling tech-
nology for in-vehicle applications due to the appearance of Bluetooth OBD-II
connectors [9, 11]. These connectors enable a transparent connectivity between
the mobile device and the vehicle's ECU (see Figure 7.2).

7.3.3 Heart Rate Monitor (HRM)

Regarding heart rate monitoring (HRM) devices, there are mainly two types on
the market: the smartwatch (or other wrist band), and the chest strap. Notice
that, due to technological restrictions, smartwatch models tend to be less ac-
curate than chest-strap HRMs. Tests were conducted with di�erent models of
both types. The �rst devices used were wrist devices, including the Motorola
360 smartwatch. In this model, the back of the watch hosts the heart rate
sensor. Despite using oximeter-based technology for pulse measurement, the
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sampling frequency of the smartwatch was too low for our purposes, and, in
combination with the high battery consumption when the heart rate measure-
ment function is activated, made us disregard this device from the beginning.
So, we opted for the heart rate belt device instead.

GPS
Basic driving PIDs
  - Speed
  - Rpm
  - Fuel  Economic
Calculated variables
  - Consumption  - CO  - Consumption  - CO2
 

Heart rate
  

Driving behavior

Figure 7.3: Snapshots of the main screen and the heart rate module for the Android
application.

As we can see in Figure 7.3, the Android app displays the heart rate in real-
time, as well as a map representation of the heart rate compared with the mean
value for the part of the route completed so far, being red if it is higher than
the mean, and green otherwise.

7.3.4 Measurement Results

This study was carried out with a total of fourteen routes (nine urban routes,
two suburban routes, and three highway routes), and a total driving time of 6
hours and 11 minutes (371 minutes). Regarding the heart rate, 22290 direct
samples (one sample every second) have been obtained. Also, 4458 driving
behavior measures calculated by the neural network have been used in the test,
re�ecting the behavior of the driver at measurement time (behavior analysis
is performed with data taken from a time window starting 5 seconds before
performing the calculation).
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Table 7.1: Number of samples, time, and mean heart rate value for the di�erent routes
under analysis.

Route Type Number Routes Samples Total T ime Heart Rate Mean
Urban 9 4291 1h 03′ 39” 72.95
Suburban 2 4353 1h 12′ 33” 77.77
Highway 3 13664 3h 47′ 18” 78.85

In Tables 7.1 and 7.3 we can see the parameters associated to the di�erent
routes taken, including the total number of samples and the total driving time
for each route, as well as the mean heart rate. Since these data refer to real
everyday life situations, urban routes are typically short-lived, while highway
routes are much longer, having suburban routes an intermediate duration.

In Section 7.4 we proceed by analysing the correlation between driving behavior
and the driver's heart rate.

7.4 Experimental Results and Evaluation

In general we can assume that urban drivers can be exposed to higher levels of
stress during rush-hours [47, 49]. Similarly, the sparsest tra�c conditions can
be found in scenarios such as countryside roads, while driving on highways, or
in sparsely populated areas [48]. Hence, these two conditions should represent
the far ends that we should �nd in the routes under analysis.

Three case studies are analyzed: the driver moving in an urban scenario (9
routes), the same driver moving in a suburban scenario (2 routes), and the
driver circulating in a highway (3 routes). Overall, total time of these case
studies adds up to 6 hours and 11 minutes.

In all cases, we obtain through linear regression the approximation that better
describes the correlation between both data sets. A positive gradient shall
validate our assumption of a positive correlation between driver behavior and
heart rate, as intended (see Table 7.2).
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Table 7.2: Slope-intercept form equation of urban, suburban, and highway routes.

Behavior Quiet-Normal-Aggressive y R
Urban (9 routes) 3.054x+ 70.221 0.103
Suburban (2 routes) 1.727x+ 71.603 0.069
Highway (3 routes) 8.474x+ 73.552 0.416

Table 7.3: Mean, standard deviation, and range of route time, speed, and heart rate of
urban, suburban, and highway routes.

Urban routes Mean SD Range
Routes time (minutes) 7.75 2.64 3.11− 13.10
Speed (km/h) 31.14 24.85 0− 84
Heart rate (bpm) 71.92 6.08 60− 89

Suburban routes
Routes time (minutes) 35.96 3.56 33.45− 38.48
Speed (km/h) 34.26 26.51 0− 112
Heart rate (bpm) 72.39 5.93 61− 92

Highway routes
Routes time (minutes) 75.33 3.05 77.03.45− 78.12
Speed (km/h) 100.18 22.53 0− 134
Heart rate (bpm) 78.46 6.19 60− 114

7.4.1 Driving tests in Urban Areas

The combined data from all urban routes adds up to 71 minutes and 22 seconds
(4282 seconds) of urban driving, which corresponds to a total of 857 behavior
samples calculated by the system (see Tables 7.1 and 7.3).

By performing linear regression we �nd that equation 3.054x + 70.221 is the
corresponding regression line in the slope-intercept form, where the slope is
given by m = 3.054, and the y-intercept by b = 70.221 (See Table 7.2 for a
slope comparison against the other two studies). As it can be observed, the
intended correlation between driving styles and heart rate R is 0, 103 in the
urban scenario. The correlation value is relatively low when compared to the
result for highway routes (where R = 0.416), but it is signi�cantly greater than
the correlation obtained in suburban driving (where R = 0.069), as shown in
the following sections.
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The slope of the line also follows this trend: the slope of the equation for
highway driving is the largest (m = 8.474), followed by the urban cases where
m = 3.054.

These results were mostly expected, since driving in urban areas is more stress-
ful in most cases than suburban driving by requiring more driver attention and
greater control due to the presence of other drivers. Surprisingly, the greater
slope was achieved for the equation describing the highway scenario. A priori,
highway driving is less stressful, but we should point out that the total time
of the route is much higher, resulting in driver tiredness, as discussed in more
detail in Section 7.4.3.

We �nd that the di�erence in heart rate between quiet and aggressive behavior
is 3.05 %, about three beats per minute, as shown in Figure 7.4.a.

7.4.2 Driving Tests in Suburban Areas

In this second part of the analysis, we study two speci�c routes chosen from the
set of fourteen routes analyzed, speci�cally those corresponding to suburban
driving. Notice that such discrimination is possible since the DrivingStyles
platform, in addition to analyzing the driver behavior, is also able to compute
the route type.

The two analyzed routes have a total duration of 82 minutes and 33 seconds,
circulating at a mean speed of 34.26km/h and a maximum speed of 112km/h,
covering a total of 28.25 km; this corresponds to 4353 driving behavior-type
samples, also including data about the driver's heart rate that we use for
statistical analysis (see Tables 7.1 and 7.3).

The results are not too noticeable compared to the previous case (urban driv-
ing, see Section 7.4.1) and the next one (highway driving, see Section 7.4.3).
In this case we �nd that, when the driver has a normal behavior, the heart
rate often becomes lower with respect to a quiet behavior, as can be observed
clearly in the box and whisker plot (see Figure 7.4.b) which displays the dif-
ferences in terms of heart rate between quiet, normal, and aggressive driving
behavior. This means that di�erences between quiet and normal behaviour
are not too signi�cant, and that, at times, quiet driving is not a driver deci-
sion, but it is rather forced due to external conditions (e.g. tra�c jam), which
can cause stress. For this test subject, though, aggressive driving provoked a
slightly increased heart rate.
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7.4.3 Driving Tests in Highways

In this third part of the analysis, we evaluate three routes with a total duration
of 3 hour and 46 minutes, and where the mean speed is of 100.18 km/h, the
maximum speed is of 134 km/h, and the total distance covered is 394 km. In
total, we have 13664 driving behavior-type samples, also including data about
the driver's heart rate that we use in the statistical analysis (see Tables 7.1
and 7.3). The most relevant characteristics of the three highway routes can be
seen in Table 7.4.

Table 7.4: General characteristics of highway routes.

Time Start T ime Arrival T ime Max Speed Mean Speed
Highway 1 81.44 09 : 45 : 33 11 : 07 : 18 134 km/h 96.99 km/h
Highway 2 79.32 18 : 35 : 25 19 : 54 : 58 120 km/h 100.67 km/h
Highway 3 74.42 16 : 16 : 11 17 : 30 : 55 119 km/h 103.16 km/h

Results show that the linear trendline remains clearly positive, being the slope
value m = 8.474, and the coe�cient of determination R = 0.416. This cor-
relation coe�cient indicates that there is a clear lineal relationship between
aggressive driving behavior and heart rate. Highway driving is the one that
most clearly shows the impact of driving aggressiveness on heart rate values.
It should also be denoted that the routes studied in this section are all long
routes, being able to produce an increased heart rate due to the fatigue caused
by prolonged driving.

We now proceed to study these three routes in more detail, highlighting the
particularities of each of them:

1. In one of the highway routes the driver had an unexpected stop requiring
getting out of the vehicle, which a�ected his heart rate, as we can see
in Figure 7.5.a. Speci�cally, the heart rate increased until reaching 117
bpm, taking several minutes to regain a normal heart rate. However, as
we can observe in the same chart, the system does not detect any change
in the driving behavior. Another thing that can be observed in the chart
is that the system detects a quiet behavior at the end of the route because
the driver is approaching the end of his trip. In fact, it can clearly be
observed how the heart rate decreases slowly, being that the DrivingStyles
system detects the behavior becoming quiet, and graphically represents
these �nal points in green.
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2. In the second long-duration route (see Figure 7.5.b) it can be seen how
the heart rate decreases gradually due to the driver sleepiness, and at a
certain moment the driver decides to turn on loud music to stay awake.
The chart shows how the heart rate has a peak and reaches 91 bpm, but,
as can be seen, the system does not detect a driver behavior change. Thus,
this example highlights that indeed loud music can help at increasing the
heart rate, preventing sleepiness and reducing the chances of having an
accident, without necessarily causing changes in the driving behavior.

3. In the last studied route, we can see that there is a period of the route
where the driver is clearly stressed and altered; the system detects that
it has an aggressive behavior during 17 minutes, as can be seen in Figure
7.5.c. The driver then calms down and the heart rate normalizes for the
rest of the trip.
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(a) Urban routes.

(b) Suburban routes.

(c) Highway routes.

Figure 7.4: Box and whisker plot for heart rate vs. driving behavior.
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Figure 7.5: Heart rate evolution along the three highway routes
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7.5 Conclusions and Future Work

In this chapter we studied the correlation between driver heart rate and driver
behavior. We based our study on the use of our novel DrivingStyles architec-
ture, that combines new technologies such as smartphones and wearable body
sensors with modern software implementations of arti�cial neural networks.

The results of the present study indicated that aggressive driving caused an
increase in the heart rate, being able to rise it by up to 2.5 % and 3 % beats
per minute. In statistical terms, we also found that, as the number of samples
increases, the correlation between the driver behavior and heart rate becomes
signi�cant. In terms of highway driving, we �nd that in general fatigue can
a�ect driving behavior, although in the initial part of the trip the driver tends
to pregressively relax. The same occurs near the end of the trip. Since this
study has been conducted taking a middle-aged male subject as reference, in
future works we will expand the scope to more drivers of di�erent ages, which
will help at covering a wider range of possible cases.

7.6 Acknowledgments

This work was partially supported by the Ministerio de Economía y Compet-
itividad, Programa Estatal de Investigación, Desarrollo e Innovación Orien-
tada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant
TEC2014-52690-R.

99





Chapter 8

Summary of Achievements

In this chapter of the thesis we bring together all the achievements acomplished
throughout this thesis. As a summary of this section, Figure 8.1 shows a
reduced scheme with all the elements involved in the architecture that we have
proposed in this thesis. We also use this section to develop those topics that
were not fully developed in the di�erent published papers.

Hardware    Software

Web Data Center

ELM327 DrivingStyles App

Figure 8.1: Overall hardware and software system architecture.
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8.1 Neural Network Tunning

One of the stages of data preprocessing consists in selecting the possible input
variables for the Neural Network (route type and driving style). If we reduce
too much the number of input variables, we will have fast learning cycles, but
at the cost of decreasing the network performance due to the lack of important
variables for the classi�cation. On the contrary, we can include too many input
variables, some strongly correlated and therefore redundant, resulting in net-
works that provide all the information we have but which are overloaded with
very long cycles, and sometimes low performance because it o�ers information
indiscriminately.

Table 8.1: Neural Networks input variables.

Input Description

Input 1 Average speed.
Input 2 Standard deviation speed.
Input 3 Average acceleration.
Input 4 Standard deviation acceleration.
Input 5 RpmAverage.
Input 6 Rpm Standard deviation.

Table 8.1 shows the input variable we selected to determine the DrivingStyle.
The subset is not minimal, but it represents a compromise between a manage-
able (not too large) number of variables, and an acceptable network perfor-
mance. Notice that the selected variables can be obtained from the Electronic
Control Unit (ECU). Three of those possible variables that we have chosen to
train the neural network are speed, vehicle acceleration, and engine revolutions
(the mean and standard deviation of the three variables). While we were able
to measure the value of this variables in all the vehicles used for testing, other
variables such as the position of the accelerator's pedal, which we also con-
sidered initially that could provide useful information for the neural network
training, had to be discarded because not all the ECUs return this value (see
Table 8.1).

The steps to generate the two neural networks that will be applied later to
characterize the route and driver's behavior are the following:
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1. First, we create the empty neural network, de�ning the number of inputs
that in our case are six (average speed and its standard deviation, mean
acceleration and its deviation, and the mean rpm and its standard devia-
tion). In both neural networks, a greater number of hidden nodes allows
to improve the success rate, but has the negative e�ect of increasing the
response time. The three outputs in the characterization of the road
type are: city, suburban, and highway, and for the neural network that
characterizes the style of driving of the user the possible outputs are:
quiet, normal, and aggressive; We have to obtain two neural networks
separately, but that share the same input variables.

2. Once we create the empty neuronal network with six input neurons, nine
hidden neurons, and three output neurons, we choose the backpropa-
gation learning function [14]. We obtained good results to characterize
the routes and driving style. There are other learning functions such as
backprop-momentum, hebbian, delta-rule, etc., but from the beginning
we chose backpropagation because it gives very good results in classi�ca-
tion problems like the one we are describing [14, 26].

3. The data of each input parameter are normalized between 0 and 1. This
normalization is done with the whole range of possible values, i.e., the
minimum and maximum value of each variable of the input domain used
in the creation of the training and test �les (see Figure 8.2). The nor-
malized value of the input variable x of the pattern p, the original value
of the variable x of that pattern p, and min(x), max(x), which refer to
the minimum and maximum values of that variable. One of the reasons
for this normalization is that the activation of the output neuron of the
multilayer neuron network can only reach values between 0 and 1. By
normalizing the data in this way all values will be within the same range,
and the results obtained by the di�erent models can be compared di-
rectly. Once we normalized the input variables we can already generate
the validation and test �les.

4. Then, the weights are generated in a totally random way for the neural
network links. For this purpose, we use the ramdomize weights function to
perform a random initialization of the neural network weights, by default
between -1 and 1.

The neural network is saved in the initialized state to make sure that all
the tests that are performed depart from the same initial weights, thus
avoiding chance, and it is only necessary to load the standard validation
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SNNS pattern definition file V3.2
generated at 09-07-2012 15:13:15

No. of patterns : 104
No. of input units : 6
No. of output units : 3

# Input pattern 1:
0.433333 0.0333333 0.029918 0.353793 0.434195 0.00764575
# Output pattern 1:
0 0 1
# Input pattern 2:
0.470833 0.0544862 0.117623 0.471716 0.449088 0.0472043
# Output pattern 2:
0 0 1
. . . . . . . . . . .

Nº Inputs
Nº Outputs

Nº Training Patterns

Header

Urban Suburban Highway

Quiet Normal Agressive

AVG(speed)  STD(speed) AVG(acel) 

STD(acel) AVG(rpm) STD(rpm)

Figure 8.2: Neural network training �le.

and test �les generated previously from the web application to begin the
training.

5. Training; once the JavaNNS application is con�gured1, we start the train-
ing of the neural network, so that the application calculates the average
quadratic error. In each learning iteration we need to have the error win-
dow visible and the weights window. We set the learning rate or learning
ratio to 0.2, and we modify it to observe how it a�ects the error of the
neural network. The higher the learning rate, the greater the change
in the weights at each iteration, so learning becomes faster; on the other
hand, it can cause unwanted oscillations in the network. Also the number
of learning cycles that are carried out in the tests will be adjusted.

A more detailed explanation of this point can be seen in Chapter 3,
where we present the paper published as "DrivingStyles: a smartphone
application to assess driver behavior".

1http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/manual/JavaNNS-manual.html
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8.2 Data Center

8.2 Data Center

The implemented Data Center is another key element of our architecture. It
allows visualizing to the drivers, routes or segments of their routes, and the
system automatically returns the type of road, and the associated driving style.
It was also used at the beginning of the project to select the most interesting
driver's route based on, data received from the drivers who participated in our
study, to train the two neural networks detecting driving behavior and route
type.

As the architecture evolved, more elements were incorporated that gave more
functionality to the Data Center, such as the number of plots that can be
displayed (a total of 17 plots, see Figures 8.3(b) and 8.3(c)), and the data base
was expanded, tripling the database �elds (a total of 37 variables sent from
the mobile and smartwatch).

In our implementation, we use the Apache server (v.2.0.48) from the Apache
Software Foundation (ASF) 2 [51], as the front-end Web server. For the middle-
tier, we use the J2EE application server. It is integrated with Tomcat Web
container v.8.5.11, which is compatible with the Servlet 3.1 and JavaServer
Pages 2.1(JSP)[52] speci�cations.

Tomcat also provides the communication mechanisms with the Apache Web
servers in the front-end tier. We use Sun JVM from JDK v.1.5.0 04 for Linux.
For the backend tier, we use a machines running MySQL v.5.6.353 [53] database
servers.

As a content management system (CMS) we used Joomla R©4, which is an open
source platform on which Web sites and applications can be created. Joomla
connects the site to a MySQLite or MySQL database in order to make content
management and delivery easier for both the site manager and web visitors.

2http://httpd.apache.org
3http://www.mysql.com
4https://www.joomla.org
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Imprimir en: miércoles, 15 de marzo de 2017 0:40:59
Anfitrión: 3G
Usuario: GPRS

(a) Route Feature Summary.
Imprimir en: miércoles, 15 de marzo de 2017 0:42:46

Anfitrión: 3G
Usuario: GPRS

(b) Route plots Car/Body Sensors.
Imprimir en: miércoles, 15 de marzo de 2017 1:10:34

Anfitrión: 3G
Usuario: GPRS

(c) Route plots Watch Sensors.

Figure 8.3: Data Center Plots.
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8.3 Android Application

In our DrivingStyles architecture we �rst moved all computational load to
the server. Once the di�erent estimation algorithms were debugged, especially
those concerning the neural networks, we implemented the main logical element
that we had developep on the server also in the Android app. This way,
DrivingStyles handles the complexity of real-time applications by sharing it
with the Data Center.

Figures 8.4 and 8.5 shows the Android application run-time �owchart. As
we can see the application has several well de�ned blocks. On the one hand
we have the data capture part, either from the vehicle's ECU, a heart rate
band to get the heart rate, or a smartwatch to communicate with the driver.
Moreover, the graphical visualization includes the plots and the main screen,
the con�guration part, and �nally the data sending part.

The �rst step for a new user is to register at the DrivingStyles Data Center5.
After connecting to the Bluetooth ELM327 interface we only have to match
the phone with the car OBD-II; this way we enable a communications path
between the vehicle and the DrivingStyles data center.

To end this section about the Android App, Figure 8.6 summarizes most of
the application functionalities. The application was created from the outset
with a double functionality, the �rst was to obtain the ECU data, to be able
to perform the data mining that has been used in this thesis, and a second
market oriented functionality to achieve the highest number of drivers. The
application has now more than 6,000 installations downloaded from Google
Play6.

Among other functionalities, we can highlight the set of plots of all parameters
analyzed:

1. Obtained directly from the ECU, as acceleration, rpm, speed, and those
the parameters indirectly calculated from variables obtained from the
ECU, such as consumption.

2. Others plots obtained through the use of Neural Networks, behavior and
route type.

3. Plot and map related to heart rate.
5http://www.drivingstyles.info
6https://play.google.com/store/apps/details?id=com.driving.styles
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In addition, the driver can visualize, among other variables, instantaneous fuel
consumption, heart rate, ECU variables, and driving style, all in real-time. it
is also possible to con�gure the sensitivity levels, where the system will notify
the user when a certain threshold of aggressiveness is exceeded; this is achieved
either by vibrations and acoustic signals in the mobile device, or by messages
and vibrations in the wear watch.

Currently, the application supports more than 4586 devices The current version
of DrivingStyles is the Android 5.0 Lollipop (API Level: 21) that supports more
than 4586 di�erent devices. The application evolution can be seen in the Table
8.2.

Table 8.2: DrivingStyles evolution version.

Ver. Ver. name Uploaded Status API levels SDK Size

5 2.0.1 5 Feb 2016 in Prod 21+ 21 9.02 MB
4 2.0 21 Jan 2016 Unpublished 21+ 21 8.97 MB
3 1.2 11 Jan 2015 Unpublished 14+ 21 4.96 MB
2 1.1 12 Dec 2012 Unpublished 8+ − 1.58 MB
1 1.0 21 Sep 2012 Unpublished 8+ − 1.57 MB
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GPS ModuleShow Map

Main Module

Plots ModuleShow Plots

Send to the 
data server

Send Routes

Delete route 
Data Base App

Delete Routes

Consumption 
Module

Heart Rate 
Module

OBD-II
 Module

Map Module

Server Data

Figure 8.4: Android application's modules �ow diagram.
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Figure 8.5: Android application's �ow diagram.
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Figure 8.6: Android application's screen.
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8.4 Fuel Consumption and Greenhouse Gas Emissions

We also investigate to �nd out how driving style a�ects fuel consumption and
greenhouse gas emissions. Since our DrivingStyles architecture returns driver
behavior in real-time, we need to know the vehicle's instantaneous fuel con-
sumption in order to carry out the study. The problem we run into is that the
vehicle's ECU does not directly provide the instantaneous fuel consumption,
and so it must be calculated from other parameters returned by the ECU and
parameters related to the design of the vehicle engine.

In Figure 8.7 we show the four methods that our DrivingStyles architec-
ture used to calculate instantaneous fuel consumption, using the appropriate
method.

The Android application is able to analyze which variables can be obtained
from the ECU of our vehicle, and thus the calculation of instantaneous con-
sumption.

Once the instantaneous fuel consumption and driving behavior were obtained
in real time, we were able to collect thousands of samples and perform a set of
tests to carry out the study.

As it has been presented in Chapters 4 and 5 of this thesis, adopting an e�cient
driving style allows achieving fuel savings ranging from 15% to 20%. As we see
in Figure 5.6 of chapter 5, an increase in aggressiveness driving behavior causes
fuel consumption and CO2 to increase signi�cantly. Likewise, Figure 5.7 shows
how an aggressive behaviors causes a greater fuel consumption that normal or
quiet behavior. An aggressive driving style always results in a greater energy
consumption and CO2 emissions.

In
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Figure 8.7: Methods used in Android app to calculate the instantaneous fuel consumption.
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8.5 Heart Rate Analysis

After demonstrating that the driving style signi�cantly a�ects fuel consump-
tion and therefore CO2 generation, we studied how the driving style a�ects the
driver's heart rate.

The �rst devices used to capture the heart rate were wrist devices, speci�cally
the Motorola 360 smartwatch. In this model the back of the watch hosts the
heart rate sensor. Its heart rate monitor periodically checks the pulse in the
background at regular intervals, but these intervals are too long for our study
requirements, and also cause a high battery consumption when the heart rate
measurement is activated. Therefore, we opted for the heart rate belt device
to get the pulse of the heart.

Despite the aforementioned drawback, we continued with the development ori-
ented to the smartwatch, capturing of all the sensors that its can o�er. The
sensors can be seen in Figure 8.3(c) and Figure 8.6. Also, we use the smart-
watch for sending warnings and alerts to the driver at the moment that he/she
exceeds certain driving aggressivity thresholds.

Subsequently, we use a new type of device to obtain the driver's heart rate
with a sampling rate of at least 1 sample per second. This sampling frequency,
appropriate for our study, was obtained by using a heart rate chest strap, which
uses the Bluetooth 4.0 Low Energy (BLE) technology.

We proceeded, as in the case of fuel consumption, to obtain thousands of
samples with the driver's heart rate and driving style. The results obtained
can be seen in Chapters 6 and 7. Figure 7.4, shows how the heart rate changes
according to the driving behavior and how in all three groups of routes studied
(urban, suburban, and highways), the heart rate is signi�cantly higher when
the behavior is aggressive. In Figure 7.5, the analysis is performed on three
speci�c routes, each with its own characteristics, but in all of them we observe
that when the driving behavior is quiet the driver's heart rate decreases, and
on the contrary, when the driving behavior is more aggressive, or there is a
change in driving, the heart rate increases. The results of the study indicated
that aggressive driving causes an increase in the heart rate, being able to rise
it by up to three beats per minute on average.
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Chapter 9

Conclusions, Publications and

Future Work

9.1 Conclusions

The results of the works of this thesis have been detailed in the papers that
have been published in diferent journals and international conferences which
address the related topics. These papers have been included as the central
chapters of this document, as each one of them addresses one part of the key
problems in which the main thesis objective has been decomposed. We did
not want to restrict our research to a set of theoretical results, since they
can be applied to real deployments. This is why we have created open-source
developments that can be used by others.

The main objective of this thesis was to create the DrivingStyles architecture,
that allows analysing the driver's behavior, and how this behavior a�ects fuel
consumption and can cause an increase or decrease in the driver's heart rate.

The proposed architecture is able to contribute at making driving safer, and
current technologies allow us to make a more decisive contribution to safe
driving by allowing to do a real-time analysis of driving behaviour, which also
enables the generation of real-time alerts if necessary. Overall, we consider
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that this thesis, as well as other studies that are currently being carried out,
will help at providing safer driving, and thus save lives.

The conclusion of this thesis are the following:

1. Development of a client-side application supporting vehicle interaction.
The �rst thing we work out was an approach to determine the driving
style through the development of an application that uses arti�cial intel-
ligence techniques to classify driving styles. To that purpose it relies on
values such as speed, acceleration, and engine revolutions per minute, all
obtained from the vehicle's ECU.

To meet the aforementioned goal we implemented a training algorithm
based on neural networks, able to characterize the current road type and
the driver behavior. The application has been developed for the Android
platform1 to promote free software, but it could have been done in iOS2

as well, reminding that between both they encompass more than 90% of
the market.

Using the OBD-II Bluetooth interface (ELM327) [9, 10] the application
obtains information such as speed, acceleration, rpm, accelerator pedal
position, along with the vehicle geographic position using GPS (Global
Positioning System). Once the information is collected the user will send
the route data to the data center for analysis, being it also analized in
Real Time within the developed application.

2. Creation of a Data Center that collects all data sent by the drivers. We
have advocated in this case for developing the server with free software
tools like Apache, Java, PHP, and Joomla. After collecting the data of the
drivers we use the most representative ones to train the Neural Networks,
that constitutes the third objective of this thesis.

3. Analysis of stored data on the server using Neural Networks. The ob-
tained data are used to train a Neural Network through the backpropa-
gation algorithm. This technique provides good results in classi�cation
problems such as the one addressed in this thesis. At the same time, a
second version of the Android app was implemented with the same Neural
Network.

4. We developed modules able to compute the instantaneous fuel consump-
tion as well as the greenhouse gases emitted. From these two parameters

1http://www.android.com
2http://www.apple.com/ios
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we were able to analyze how the di�erent behaviors in the driving style
result in a greater or smaller fuel consumption and, consequently, the en-
vironmental impact that this entails. We demonstrate that, with a quiet
driving style, we can reduce fuel consumption between 15 % and 20 %.

5. The last contribution of this thesis includes a discussion of the results
obtained regarding the heart rate, where we �nd that it is also a�ected
by the driving style. In fact, we demonstrate that an aggressive driving
style can raise the heart rate between 2.5 % to 3 %. We also perform a
comparative analysis between di�erent routes and di�erent driving styles,
evaluating the changes produced in the drivers' heart rate.

9.2 Publications

In the framework of this thesis, we have written several papers, with the col-
laboration of other researchers. These papers describe the solutions proposed
to the diferent problems that have been exposed during the research phase.

Journals

• Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano "On the cor-
relation between heart rate and driving style in real driving scenarios"
Mobile Networks & Applications. Article 833, 16 February 2017. DOI:
10.1007/s11036-017-0833-x JCR Impact Factor 1,538 Q2.

• Javier E. Meseguer, C. K. Toh, Carlos T. Calafate, Juan Carlos Cano,
Pietro Manzoni "DrivingStyles: A mobile platform for driving styles and
fuel consumption characterization" Journal of Communications and Net-
works. Accepted 28 November 2016. JCR Impact Factor 2015 = 1,462
Q2.

International Conferences

• Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano, Pietro Man-
zoni (2013) "DrivingStyles: A Smartphone Application to Assess Driver
Behavior" 18th IEEE symposium on Computers and Communications
ISCC 2013 July 7-10, Split, Croatia. Pages 535-540, ISBN: 978-1-4799-
3755-4 CORE: B.

• Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano, Pietro Man-
zoni "Characterizing the Driving Style Behavior using Arti�cial Intelli-
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gence Techniques" 38th IEEE Conference on Local Computer Networks.
LCN 2013 October 21-24, Sydney, Australia. ISBN/ISSN: 978-1-4799-
0536-2 CORE: A.

• Martínez Tornell, Sergio, Javier E. Meseguer, Carlos T. Calafate, Juan
Carlos Cano, Pietro Manzoni "Smartphones as the keystone for leveraging
the di�usion of ITS applications" 9th European Congress and Exhibition
on Intelligent Transport Systems and Services (ERTICO-ITS in Europe
2013).

• Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano, Pietro Man-
zoni (2015) "Assessing the Impact of Driving Behavior on Instantaneous
Fuel Consumption" 12th IEEE Consumer Communications and Network-
ing Conference CCNC 2015 January 9-12, Las Vegas Nevada, USA. Pages
443-448, ISBN/ISSN: 978-1-4799-6390-4/2331-9860 CORE: B.

• Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano "DrivingStyles:
Assessing the Correlation of Driving Behavior with Heart Rate Changes"
GOODTECHS, 2nd EAI International Conference on Smart Objects and
Technologies for Social Good Best. November 30 � December 1 2016,
Venice. Italy. To be published. Best Paper Award

9.3 Products

Apart from the scienti�c papers, we have created a set of products that gather
the ideas and the implementations used for the validation of the research works.
Apart from the implementations that have been made to validate the ideas and
algorithms described in the papers, an extra e�ort has been invested for the
creation of �nal products that can be exported to other deployments. All the
software development that has been implemented as part of the DrivingStyles
architecture, has been deposited in the service of patents of the Universitat
Politècnica de València3 in the area of knowledge of Computer Science, Infor-
mation Technology, Electronic Technology and Communications with the item
KNS-R-16474-2013.

The Android application can be free downloaded from the DrivingStyles web-
site4 or from Google Play5. Our URL is http://www.drivingstyles.info.

3http://www.upv.es/entidades/SGI/indexc.html
4http://www.drivingstyles.info/index.php/en/
5https://play.google.com/store/apps/details?id=com.driving.styles
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9.4 Open Reseach Issues

With respect to future lines of work that have emerged under the framework
of this thesis, we can distinguish several areas.

On the one hand, it would be really interesting to implement di�erent Arti�cial
Intelligence (AI) techniques such as expert systems, Bayesian networks, or
arti�cial intelligence based on behaviors, and perform a comparative study with
respect to the backpropagation technique we have used on the e�ectiveness of
these techniques in obtaining solutions to the classi�cation problems addressed
in the thesis.

On the other hand, all the information gathered could be used by di�erent
applications oriented to improve road safety. This could be achieved through
a Big Data analytics platform, and in this regard data mining plays an im-
portant role in the analytical discovery process, becoming a key element to
predict future outcomes and help to save lives. We intend to extend this plat-
form to provide tra�c recommendations based on real-time feedback about
the congestion of di�erent routes.

Another very interesting area of research is preventing driver sleepiness. The
cost of having a security system based on our architecture would be nearly
zero, merely requiring adjusting the detection of driving styles algorithms.
Some high-end manufacturers are adding sleep sensors to their cars right at
the factory (e.g. Lexus brand), that placed a camera in the dashboard that
tracks the driver's face, rather than the vehicle's behavior, and alerts the driver
if his or her movements seem to indicate sleep; similarly, Saab uses two cameras
in the cockpit to monitor the driver's eye movement, and alerts the driver with
a text message in the dash, followed by a loud audio message. In general, we
consider that vehicle/driver interactions are worthy of more scrutiny, and we
are con�dent that this topic will receive much attention in a near future.
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Glossary

AIT Intake Air Temperature. 39, 55, 57
ANN Arti�cial Neural Network. 10
API Application Program Interface. 26
ASCII American Standard Code for Information Interchange. 9
ASF Apache Software Foundation. 105

BLE Bluetooth Low Energy ,Bluetooth LE. 77, 113
BMP Bitmap (�le name extension). 15
BMW Bayerische Motoren Werke. 56
BMP Beats Per Minute. 75, 90

CAN Controller Area Network. 6
CDMA Code Division Multiple Access. 15
CMS Content Management System. 27, 43, 59, 89, 105
CSS3 Cascading Style Sheet 3. 15
CU Control Units. 22

DTC Diagnostic Trouble Codes. 7

ECU Electronic Control Unit. vii, viii, 20, 25, 28, 35, 38, 44, 54, 55,
90, 102

EDGE Enhanced GPRS. 15
ELM327 PIC microcontroller ELM Electronics. 8, 24, 58

GCM Google Cloud Messaging. 15
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GIF Stands for Graphics Interchange Format version 5. 15
GM General Motors. 56
GPS Global Positioning System. 24�26, 41, 58
GSM Global System for Mobile Communications. 15

H.263 Video compression standard. 15
H.264 MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC).

15
HRM Heart Rate Monitor. 76, 90
HTML5 HyperText Markup Language 5(and �le extension). 15
HTTP Hypertext Transfer Protocol (world wide web protocol). 27,

43, 59, 89

IDEN Integrated Digital Enhanced Network. 15
iOS iPhone Operating System. 14
IoT Internet of Things. 9
ISO 14230 KWP200 Keyword Protocol 2000. 8
ISO 15031 Communication between vehicle and external equipment for

emissions-related diagnostics. 7
ISO 15765 CAN ISO9141. 8
ISO 9141 In European; Asian; and Chrysler vehicles. 6, 8
ITS Intelligent Transportation Systems. 54

J1962 Female Connector OBD-connector met Paars Core appropriate
for the auto's Obdii Interface. 7

JDK Java Development Kit. 105
JPEG Stands for Joint Photographic Experts Group. 15
JVM Java Virtual Machine. 105

LTE Long Term Evolution is part of the GSM. 15

MAF Mass Air Flow. 39, 45, 46, 57, 62
MAP Manifold Absolute Pressure. 39, 46, 55, 58
MIL Malfunction Indicator Lamp. 5, 6
MMS Multimedia Messaging Service. 15
MPEG-4 Motion Picture Experts Group Layer-4 Video. 15
MPG Miles Per Galon. 44, 61
MySQL My Structured Query Language. 105

NFC Near Field Communication. 15
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OBD-I On Board Diagnostics I. 6
OBD-II On Board Diagnostics II. vii, 5, 6, 20, 22, 38, 55, 72, 73
OBU On Board Unit. vii, 20

PHP Hypertext Preprocessor. 23, 57
PIC Peripheral Interface Controller. 8
PID Parameter IDs. 45, 62
PID 010B PID Intake Manifold Pressure. 46, 63
PID 010C PID RPM. 45, 46, 63
PID 010D PID Fuel. 44, 62
PID 010F PID Intake Air Temperature. 46, 63
PID 0110 PID Mass Air Flow. 45, 62
PID 0143 PID Absolute Load. 45, 63
PID 015E PID Engine Fuel Rate. 44, 62
PNG Portable Network Graphics (graphic �le standard/extension).

15

RPM Revolutions Per Minute. 28, 46, 58
RS232 Recommended Standard 232. 8

SAE
J1850

Speci�es requirements for a vehicle data communications net-
work.Compliance committee recently formed (J1699). 6, 8

SAE
J1939

Glossary of terms for vehicle networks. 8

SMS Short Service Message. 15, 22
SSE Sum of Squared Errors. 31

UMTS Universal Mobile Telecommunications System. 15
URL Uniform Resource Locator. 27, 43, 59

V2V vehicle-to-vehicle. vii

WAV Windows Wave (audio format/�le extension). 15
Wi-Fi IEEE 802.11b wireless networking. 15
WiMAX Worldwide Interoperability for Microwave Access, Inc. (IEEE

802.16 wireless broadband standard). 15
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