- -

Topological n-cells and Hilbert cubes in inverse limits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Topological n-cells and Hilbert cubes in inverse limits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubin, Leonard R. es_ES
dc.date.accessioned 2018-04-11T12:08:02Z
dc.date.available 2018-04-11T12:08:02Z
dc.date.issued 2018-04-02
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/100221
dc.description.abstract [EN] It has been shown by S. Mardešić that if a compact metrizable space X has dim X ≥ 1 and X is the inverse limit of an inverse sequence of compact triangulated polyhedra with simplicial bonding maps, then X must contain an arc. We are going to prove that if X = (|Ka|,pba,(A,))is an inverse system in set theory of triangulated polyhedra|Ka|with simplicial bonding functions pba and X = lim X, then there exists a uniquely determined sub-inverse system XX= (|La|, pba|Lb|,(A,)) of X where for each a, La is a subcomplex of Ka, each pba|Lb|:|Lb| → |La| is surjective, and lim XX = X. We shall use this to generalize the Mardešić result by characterizing when the inverse limit of an inverse sequence of triangulated polyhedra with simplicial bonding maps must contain a topological n-cell and do the same in the case of an inverse system of finite triangulated polyhedra with simplicial bonding maps. We shall also characterize when the inverse limit of an inverse sequence of triangulated polyhedra with simplicial bonding maps must contain an embedded copy of the Hilbert cube. In each of the above settings, all the polyhedra have the weak topology or all have the metric topology(these topologies being identical when the polyhedra are finite). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Hilbert cube es_ES
dc.subject Inverse limit es_ES
dc.subject Inverse sequence es_ES
dc.subject Inverse system es_ES
dc.subject Polyhedron es_ES
dc.subject Simplicial inverse system es_ES
dc.subject Simplicial map es_ES
dc.subject Topological n-cell es_ES
dc.subject Triangulation es_ES
dc.title Topological n-cells and Hilbert cubes in inverse limits es_ES
dc.type Artículo es_ES
dc.date.updated 2018-04-11T11:48:37Z
dc.identifier.doi 10.4995/agt.2018.7061
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Rubin, LR. (2018). Topological n-cells and Hilbert cubes in inverse limits. Applied General Topology. 19(1):9-20. https://doi.org/10.4995/agt.2018.7061 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2018.7061 es_ES
dc.description.upvformatpinicio 9 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19
dc.description.issue 1
dc.identifier.eissn 1989-4147


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem