- -

Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment

Show simple item record

Files in this item

dc.contributor.author Ortiz-Miranda, Annette es_ES
dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.contributor.author Valle-Algarra, Francisco M. es_ES
dc.contributor.author Bolivar Galiano, Fernando es_ES
dc.contributor.author Martin Sanchez, Ines es_ES
dc.contributor.author López Miras, María del Mar es_ES
dc.date.accessioned 2018-04-19T04:13:48Z
dc.date.available 2018-04-19T04:13:48Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1432-8488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/100590
dc.description.abstract [EN] The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack. es_ES
dc.description.sponsorship Financial support from the MINECO Projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged. The authors also wish to thank Dr. José Luis Moya López, Mr. Manuel Planes Insausti, and Mrs. Alicia Nuez Inbernón (Microscopy Service of the Universitat Politècnica de València) for technical support.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.relation.ispartof Journal of Solid State Electrochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrochemistry es_ES
dc.subject Biodeterioration es_ES
dc.subject Cadmium sulfide es_ES
dc.subject Egg tempera es_ES
dc.subject Egg oil emulsion es_ES
dc.subject FTIR es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification PINTURA es_ES
dc.title Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10008-016-3349-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Ortiz-Miranda, A.; Domenech Carbo, A.; Domenech Carbo, MT.; Osete Cortina, L.; Valle-Algarra, FM.; Bolivar Galiano, F.; Martin Sanchez, I.... (2016). Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. Journal of Solid State Electrochemistry. 20(12):3287-3302. https://doi.org/10.1007/s10008-016-3349-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10008-016-3349-6 es_ES
dc.description.upvformatpinicio 3287 es_ES
dc.description.upvformatpfin 3302 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\316414 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Ratledge C (1994) Biochemistry of microbial degradation. Springer, Berlin es_ES
dc.description.references Caneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage, the Getty Conservation Institute, Los Angeles es_ES
dc.description.references Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 47–55 and references therein es_ES
dc.description.references Gargani G (1968) Fungus contamination of Florence art masterpieces before and after the 1966 disaster. In: Walters AH, Elphick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp. 252–257 es_ES
dc.description.references Seves AM, Sora S, Ciferr O (1996) The microbial colonization of oil paintings—a laboratory investigation. Int Biodeter Biodegr. 37:215–224 es_ES
dc.description.references Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. University of Lisbon es_ES
dc.description.references Strzelczyk AB (2004) Observations on aesthetic and structural changes induced in polish historic objects by microorganisms. Int Biodeter Biodegr. 53:151–156 es_ES
dc.description.references López-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, Martín-Sánchez I (2013) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29:301–314 es_ES
dc.description.references Koszewski A, Rymuza Z, Reuther F (2008) Evaluation of nanomechanical, nanotribological and adhesive properties of ultrathin polymer resist film by AFM. Micro Engn 85:1189–1192 es_ES
dc.description.references Schabereiter-Gurtner C, Piñar G, Lubitz W, Rölleke S (2001) An advanced molecular strategy to identify bacterial communities on art objects. J Microbiol Meth 45:77–87 es_ES
dc.description.references Florian MLE (1996) The role of the conidia of fungi in fox spots. Stud Conserv 41:65–75 es_ES
dc.description.references Arai H, Matsui N, Matsumura N, Murakita H (1988) Biochemical investigations on the formation mechanisms of foxing. Stud Conserv 33:11–12 es_ES
dc.description.references Arai H, Matsumura N, Murakita H (1990) Microbiological studies on the conservation of paper and related cultural properties: part 9, induction of artificial foxing. Science for Conservation 29:25–34 es_ES
dc.description.references Hayashi T, Namili M (1986) Role of sugar fragmentation in early stage browning of amino-carbonyl reaction of sugars with amino acids. Agr Biol Chem Tokyo 50:1965–1970 es_ES
dc.description.references Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration, 2 edn. Cambridge University Press, Cambridge es_ES
dc.description.references Bock E, Sand W (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514 es_ES
dc.description.references Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45 es_ES
dc.description.references Van der Snickt G, Dik J, Cotte M, Janssens K, Jaroszewicz J, De Wolf W, Groenewegen J, Van der Loeff L (2009) Characterization of a degraded cadmium yellow (CdS) pigment in an oil painting by means of synchrotron radiation based X-ray techniques. Anal Chem 81:2600–2610 es_ES
dc.description.references Child AM (1995) Microbial taphonomy of archaeological bone. Stud Conserv 40:19–30 es_ES
dc.description.references Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(2007):1090–1100 es_ES
dc.description.references Kinderlerer JL (1994) Degradation of the lauric acid oils. Int Biodeter Biodegr 33(1994):345–354 es_ES
dc.description.references van den Berg JDJ, van den Berg KJ, Boon JJ (2002) Identification of non-cross-linked compounds in methanolic extracts of cured and aged linseed oil-based paint films using gas chromatography-mass spectrometry. J Chromatogr A 950:195–211 and references therein es_ES
dc.description.references Lefèvre M (1974) La ‘maladie verte’ de Lascaux. Stud Conserv 19:126–156 es_ES
dc.description.references Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31:65–69 es_ES
dc.description.references Breitbach AM, Rocha JC, Gaylarde CC (2011) Influence of pigment on biodeterioration of acrylic paint films in southern Brazil. J Coat Technol Res 8:619–628 es_ES
dc.description.references Keune K, van Loon A, Boon JJ (2011) SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Microsc Microanal 17:696–701 es_ES
dc.description.references Meilunas RJ, Bentsen JG, Steinberg A (1990) Analysis of aged paint binders by FTIR spectroscopy. Stud Conserv 35:33–51 es_ES
dc.description.references Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M (2008) Attenuated total reflection micro FTIR characterization of pigment–binder interaction in reconstructed paint films. Anal Bioanal Chem 392:65–76 es_ES
dc.description.references Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T (2009) Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta 79:419–428 es_ES
dc.description.references Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1–86 es_ES
dc.description.references Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and Dropletst, 2 edn. Springer, Berlin-Heidelberg es_ES
dc.description.references Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report). Pure Appl Chem 85:609–631 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods for Archaeometry, conservation and restoration (monographs in electrochemistry series Scholz F edit). Springer, Berlin-Heidelberg es_ES
dc.description.references Doménech-Carbó A (2010) Electrochemistry for conservation science. J Solid State Electr 14:349–351 es_ES
dc.description.references Matteini M, Moles A (1989) La Chimica nel Restauro. Nardini, Firenze es_ES
dc.description.references Gettens RJ, Stout GL (1966) Painting materials. A short encyclopedia. Dover Publications, New York es_ES
dc.description.references Cennini C (1982) Il libro dell’ arte. Akal, Madrid es_ES
dc.description.references Cepriá G, García-Gareta E, Pérez-Arantegui J (2005) Cadmium yellow detection and quantification by voltammetry of immobilized microparticles. Electroanalysis 17:1078–1084 es_ES
dc.description.references Domínguez I, Doménech-Carbó A, Cerisuelo JP, López-Carballo G, Henández-Muñoz P, Gavara R (2014) Contact probe electrochemical characterization and metal speciation of silver LLDPE nanocomposite films. J Solid State Electrochem 18:2099–2110 es_ES
dc.description.references Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487 es_ES
dc.description.references Chang CM, Powrie WD, Fennema O (1977) Microstructure of egg yolk. J Food Sci 42:1193–1200 es_ES
dc.description.references Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671 es_ES
dc.description.references Boehm S, Abaturov LV (1977) Structural changes of met-haemoglobin by dehydration. FEBS Lett 77:21–24 es_ES
dc.description.references Karpowicz A (1981) Ageing and deterioration of proteinaceous media. Stud Conserv 26:153–160 es_ES
dc.description.references Koper A, Grabarczyk M (2012) Simultaneous voltammetric determination of trace bismuth(III) and cadmium(II) in water samples by adsorptive stripping voltammetry in the presence of cupferron. J Electroanal Chem 681:1–5 es_ES
dc.description.references Zakharchuk N, Meyer S, Lange B, Scholz F (2000) A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta 73:667–704 es_ES
dc.description.references Komorsky-Lovric S, Lovric M, Bond AM (1992) Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta 258:299–305 es_ES
dc.description.references Arjmand F, Adriaens A (2012) Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem 16:535–543 es_ES
dc.description.references Meyer B, Ziemer B, Scholz F (1995) In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem 392:79–83 es_ES
dc.description.references Hasse U, Scholz F (2001) In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun 3:429–434 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X (2007) Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta 71:1569–1579 es_ES
dc.description.references Eissler RL, Princen RH (1972) The interface between reactive pigment and binder matrix. J Electroanal Chem 37:327–336 es_ES
dc.description.references Kuznetsov AM, Ulstrup J (1989) Protein dynamics and electronic fluctuation effects in electron transfer reactions of membrane-bound proteins and metalloprotein complexes. J Electroanal Chem 275:289–305 es_ES
dc.description.references Colletti LP, Teklay D, Stickney JL (1994) Thin-layer electrochemical studies of the oxidative underpotential deposition of sulfur and its application to the electrochemical atomic layer epitaxy deposition of CdS. J Electroanal Chem 369:145–152 es_ES
dc.description.references Gulaboski R, Mirceski V, Bogeski I, Hoth M (2012) Protein film voltammetry: electrochemical enzymatic spectroscopy. A review on recent progress. J Solid State Electrochem 16:2315–2328 es_ES
dc.description.references Guidelli R, Becucci L (2011) Ion transport across biomembranes and model membranes. J Solid State Electrochem 15:1459–1470 es_ES
dc.description.references Sutherland K (2003) Solvent-extractable components of linseed oil paint films. Stud Conserv 48:111–135 es_ES
dc.description.references Rossi M, Alamprese C, Ratti S (2007) Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem 102:812–817 es_ES
dc.description.references Ziyatdinova G, Morozov M, Budnikov H (2012) MWNT-modified electrodes for voltammetric determination of lipophilic vitamins. J Solid State Electrochem 16:2441–2447 es_ES
dc.description.references Madani A, Nessark B, Boukherroub R, Chehimi MM (2011) Preparation and electrochemical behaviour of PPy–CdS composite films. J Electroanal Chem 650:176–181 es_ES
dc.description.references Derrick MR, Stulik DC, Landry MJ (1999) Infrared spectroscopy in conservation science. Getty Conservation Institute, Los Angeles es_ES
dc.description.references van der Weerd J, van Loon A, Boon JJ (2005) FTIR studies of the effects of pigments on the aging of oil. Stud Conserv 50:3–22 es_ES
dc.description.references Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Bioch Bioph Sin 39:549–559 es_ES
dc.description.references Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B-Enzym 7:207–221 es_ES
dc.description.references Furlan PY, Scott SA, Peaslee MH (2007) FTIR-ATR study of pH effects on egg albumin secondary structure. Spectrosc Lett 40:475–482 es_ES
dc.description.references Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry-US 29:3303–3308 es_ES
dc.description.references Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X (2012) Structure and biodegradation mechanism of milled B. mori silk particles. Biomacromolecules 13:2503–2512 es_ES
dc.description.references Anton M (2013) Egg yolk: structures, functionalities and processes. J Sci Food Agr 93:2871–2880 es_ES
dc.description.references Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210 es_ES
dc.description.references Kumpula LS, Kumpula JM, Taskinen MR, Jauhiainen M, Kaski K, Ala-Korpela M (2008) Reconsideration of hydrophobic lipid distributions in lipoprotein particles. Chem Phys Lipids 155:57–62 and references therein es_ES
dc.description.references Schneider H, Morrod RS, Colvin JR, Tattrie NH (1973) The lipid core model of lipoproteins. Chem Phys Lipids 10:328–353 es_ES
dc.description.references Doménech-Carbó MT, Osete-Cortina L, de la Cruz-Cañizares J, Bolívar-Galiano F, Romero-Noguera J, Martín-Sánchez I, Fernández-Vivas MA (2006) Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pirolisis-gas chromatography-mass spectrometry and gas chromatography-mass spectrometry. Anal Bioanal Chem 385:1265–1280 es_ES


This item appears in the following Collection(s)

Show simple item record