- -

Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since fifteenth until twentieth century, Journal of Solid State Electrochemistry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since fifteenth until twentieth century, Journal of Solid State Electrochemistry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferragud Adam, Javier Vicente es_ES
dc.contributor.author Piquero-Cilla, Joan es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Guerola Blay, Vicente es_ES
dc.contributor.author Company Climent, Joaquin es_ES
dc.contributor.author Domenech Carbo, Antonio es_ES
dc.coverage.spatial east=-0.7532808999999361; north=39.4840108; name= Comunidad Valenciana, Espanya
dc.date.accessioned 2018-04-19T04:15:00Z
dc.date.available 2018-04-19T04:15:00Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1432-8488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/100594
dc.description.abstract [EN] The application of the voltammetry of microparticles methodology to the study of gildings in paintings and architectural ornaments is described. Nanosamples from pieces from different churches of the Comunitat Valenciana (Spain) covering since the fifteenth century until nowadays were studied upon attachment to graphite electrodes in contact with aqueous HCl and H2SO4 electrolytes. Electrochemical measurements, combined with field emission scanning electron microscopy X-ray microanalysis (FESEM-EDX) and atomic force microscopy (AFM) data, denoted that a common manufacturing technique was used with minimal variations along time. The relationship between specific voltammetric features associated to bulk gold and active surface sites, however, changed monotonically with time, thus suggesting the possibility of age monitoring. es_ES
dc.description.sponsorship Financial support from the MINECO Projects CTQ2014-53736-C3-1-P, CTQ2014-53736-C3-2-P and MAT2015-65445-C2-2-R, which are supported with ERDF funds is gratefully acknowledged. Likewise financial support of the Comunidad de Madrid and structural funds of the EU through Programa Geomateriales 2 ref. S2013/MIT-2914 is acknowledged. The authors thank the Seccion de Investigacion Arqueologica Municipal de Valencia for kindly authorizing sampling to carry out this research. The authors also thank Dr. Jose Luis Moya Lopez and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecnica de Valencia) for their technical support.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Solid State Electrochemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gilding es_ES
dc.subject Voltammetry of microparticles es_ES
dc.subject FESEM-EDX es_ES
dc.subject AFM es_ES
dc.subject Aging es_ES
dc.subject.classification PINTURA es_ES
dc.title Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since fifteenth until twentieth century, Journal of Solid State Electrochemistry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10008-017-3512-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-05-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Ferragud Adam, JV.; Piquero-Cilla, J.; Domenech Carbo, MT.; Guerola Blay, V.; Company Climent, J.; Domenech Carbo, A. (2016). Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since fifteenth until twentieth century, Journal of Solid State Electrochemistry. Journal of Solid State Electrochemistry. 21(5):1477-1487. https://doi.org/10.1007/s10008-017-3512-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10008-017-3512-8 es_ES
dc.description.upvformatpinicio 1477 es_ES
dc.description.upvformatpfin 1487 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\326847 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Le Goff J (1991) El hombre medieval. Alianza Editorial, Madrid es_ES
dc.description.references Valero-Cuenca A (2011) El oro: símbolo de lo trascendente en la pintura gótica. Su capacidad como elemento transformador, espiritual y plástico. Archivo de Arte Valenciano XCII. Real Academia de Bellas Artes de San Carlos, València es_ES
dc.description.references Rodriguez-López A, Khandekar N, Gates G, Newman R (2007) Materials and techniques of a Spanish Renaissance panel painting. Stud Conserv 52:81–100 es_ES
dc.description.references Chao R, Heginbotham A, Lee L, Chiari G (2014) Materials and techniques of gilding on a suite of French eighteenth-century chair. Stud Conserv 59:102–112 es_ES
dc.description.references Alfonso-Muñoz M, Ferragut-Adam X, Guerola-Blay V, Roig-Picazo MP (2008) Intervención en la ornamentación dorada del espacio central y acceso sur de la Basílica de la Virgen de los Desamparados de Valencia. Arché 3:117–126 es_ES
dc.description.references Antonelli F, Lazzarini L, Cancellere S, Tesser E (2016) Study of the deteriortion products, gilding, and polychromy of the stones of the Scuola Grande Di San Marco’s façade in Venice. Stud Conserv 61:74–85 es_ES
dc.description.references Toniolo L, Colombo C, Bruni S, Fermo P, Casoli A, Palla G, Bianchi CL (1998) Gilded stuccoes of the Italian baroque. Stud Conserv 43:201–208 es_ES
dc.description.references De Quinto ML (1984) Los batihojas artesanos del oro. Editora Nacional, Madrid es_ES
dc.description.references López-Zamora E (2007) Estudio de los materiales y procedimientos del dorado a través de las fuentes literarias antiguas: aplicación en las decoraciones de pinturas castellanas sobre tabla. PhD Thesis. Universidad Complutense de Madrid, Madrid es_ES
dc.description.references Herranz E (2000) El arte de dorar, 6th edn. Dossat, Madrid es_ES
dc.description.references Crabbe AC, Giumlia-Mair A, Wouters HJM, Terryn H, Vandendael I (2016) De Colorando Auro: Experimenta and literatura study of medieval colouring récipes on gilded plates Stud Conserv 61: 274–285 and references therein es_ES
dc.description.references González E (1997) Tratado del dorado, plateado y su policromía (Tecnología, conservación y restauración). Universitat Politècnica de València, València es_ES
dc.description.references Baixauli-Juan I (2001) Els artesans de la València del segle XVII: Capítols dels oficis i col·legis. Universitat de València, València es_ES
dc.description.references Mocholí-Roselló A (2012) Pintors i artífex de la València medieval. Universitat Politècnica de València, València es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) In: Scholz F (ed) Electrochemical methods in Archaeometry, conservation and restoration, Monographs in Electrochemistry Series. Springer, Berlin-Heidelberg es_ES
dc.description.references Melo HP, Cruz AJ, Candelas A, Mirao J, Cardoso AM, Oliveira MJ, Valadas S (2014) Problems of analysis by FTIR of calcium sulphate–based preparatory layers: the case of a group of 16th-century Portuguese paintings. Archaeometry 56:513–526 es_ES
dc.description.references Picollo M, Fukunaga K, Labaune J (2015) Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system. J Cult Herit 16:73–80 es_ES
dc.description.references Duran A, Perez-Rodríguez JL, Jimenez de Haro MC, Herrera LK, Justo A (2008) Degradation of gold and false golds used as gildings in the cultural heritage of Andalusia, Spain. J Cult Herit 9:184–188 es_ES
dc.description.references Gulotta D, Goidanich S, Bertoldi M, Bortolotto S, Toniolo L (2012) Gildings and false gildings of the baroque age: characterization and conservation problems. Archaeometry 54:940–954 es_ES
dc.description.references Constantinescu B, Vasilescu A, Radtke M, Reinholz U (2010) Micro-SR-XRF studies for archaeological gold identification—the case of Carpathian gold and Romanian museal objects. Appl Phys A Mater Sci Process 99:383–389 es_ES
dc.description.references Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Voltammetry of solid microparticles immobilized on electrode surfaces, Electroanalytical Chemistry, A Series of Advances, vol 20. Marcel Dekker, New York, pp 1–86 es_ES
dc.description.references Scholz F, Schröder U, Gulaboski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and droplets, 2nd edit. Springer, Berlin-Heidelberg es_ES
dc.description.references Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem 85:609–631 es_ES
dc.description.references Doménech-Carbó A (2010) Voltammetric methods applied to identification, speciation and quantification of analytes from works of art: an overview. J Solid State Electrochem 14:363–369 es_ES
dc.description.references Doménech-Carbó A (2011) Tracing, authentifying and dating archaeological metal using the voltammetry of microparticles. Anal Methods 3:2181–2188 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA, Osete-Cortina L (2011) Authentication of archaeological lead artifacts using voltammetry of microparticles: the case of the Tossal de Sant Miquel Iberian plate. Archaeometry 53:1193–1211 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2008) Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchim Acta 162:351–359 es_ES
dc.description.references Satovic D, Martinez S, Bobrowski A (2010) Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta 81:1760–1765 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Martínez-Lázaro I (2010) Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles approach. Anal Chim Acta 610:1–9 es_ES
dc.description.references Cepriá G, Abadías O, Pérez-Arantegui J, Castillo JR (2001) Electrochemical behavior of silver-copper alloys in voltammetry of microparticles: a simple method for screening purposes. Electroanalysis 13:477–483 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Modeling corrosion of archaeological silver-copper coins using the voltammetry of immobilized particles. Electroanalysis 24:1945–1955 es_ES
dc.description.references Capelo S, Homem PM, Cavalheiro J, Fonseca ITE (2013) Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituent. J Solid State Electrochem 17:223–234 es_ES
dc.description.references Doménech-Carbó A, Del Hoyo-Rodríguez J, Doménech-Carbó MT, Piquero-Cilla J (2017) Electrochemical analysis of the first Polish coins using the voltammetry of immobilized particles. Microchem J 130:47–55 es_ES
dc.description.references Ferragud X (2015) Estudi de les tècniques del daurat i la policromia sobre l’or a l’escola valenciana del segle XV al segle XIX Analisi dels materials, tècniques i procediments. PhD Thesis, University of Valencia es_ES
dc.description.references Plumb RC, Thakkar N (1965) Volta potential studies of the aging of gold surfaces. J Phys Chem 69:439–441 es_ES
dc.description.references Rysiazhnyi V, Slavicek P, Cernak M (2014) Aging of plasma-activated copper and gold surfaces and its hydrophilic recovery after water immersion. This Solid Films 550:373–380 es_ES
dc.description.references Gubicza J, Lábár JL, Quynh LM, Nam NH, Luong NH (2013) Evolution of size and shape of gold nanoparticles during long-time aging. Mater Chem Phys 138:449–453 es_ES
dc.description.references Burke LD, Nugent PF (1997) The electrochemistry of gold: I the redox behaviour of the metal in aqueous media. Gold Bull 30:43–53 es_ES
dc.description.references Chen A, Lipkowski J (1999) Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode. J Phys Chem B 103:682–691 es_ES
dc.description.references Hoogvliet JC, van Bennekom WP (2001) Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochim Acta 47:599–611 es_ES
dc.description.references Burke LD, O’Mullane AP (2000) Generation of active surface states of gold and the role of such states in electrocatalysis. J Solid State Electrochem 4:285–297 es_ES
dc.description.references Burke LD, O’Mullane AP, Lodge VE, Mooney MB (2001) Auto-inhibition of hydrogen gas evolution on gold in aqueous acid solution. J Solid State Electrochem 5:319–327 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L (2004) Electrochemistry of archaeological metals: an approach from the voltammetry of microparticles. In: Brillas E, Cabot P-L (eds) Trends in electrochemistry and corrosion at the beginning of the 21st century (dedicated to Professor Dr. Josep M. Costa on the occasion of his 70th birthday). Universitat de Barcelona, Barcelona, pp 857–871 es_ES
dc.description.references Doyle RL, Lyons MEG (2014) The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution. J Solid State Electrochem 18:3271–3286 es_ES
dc.description.references Jeyabharathi C, Hasse U, Ahrens P, Scholz F (2014) Oxygen electroreduction on polycrystalline gold electrodes and on gold nanoparticle-modified glassy carbon electrodes. J Solid State Electrochem 18:3299–3306 es_ES
dc.description.references Jeyabharathi C, Ahrens P, Hasse U, Scholz F (2016) Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation. J. Solid State Electrochem 20:3025–3031 es_ES
dc.description.references Cherevko S, Kulyk N, Chung C-H (2012) Utilization of surface active sites on gold in preparation of highly reactive interfaces for alcohols electrooxidation in alkaline media. Electrochim Acta 69:190–196 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA (2011) ‘One-touch’ voltammetry of microparticles for the identification of corrosion products in archaeological lead. Electroanalysis 23:1391–1400 es_ES
dc.description.references Blum D, Leyffer W, Holze R (1996) Pencil-leads as new electrodes for abrasive stripping voltammetry. Electroanalysis 8:296–297 es_ES
dc.description.references Izumi T, Watanabe I, Yokoyama Y (1991) Activation of a gold electrode by electrochemical oxidation-reduction pretreatment in hydrochloric acid. J Electroanal Chem Interfacial Electrochem 303:151–160 es_ES
dc.description.references Mesgar M, Kaghazchi P, Jacob T, Pichardo-Pedrero E, Giesen M, Ibach H, Luque NB, Schmickler W (2013) Chlorine-enhanced surface mobility of Au(100). ChemPhysChem 14:233–236 es_ES
dc.description.references Scholz F, López de Lara González G, de Carvalho LM, Hilgemann M, Brainina KZ, Kahlert H, Jack RS, Minh DT (2007) Indirect electrochemical sensing of radicals and radical scavengers in biological matrices. Angew Chem Int Ed 46:8079–8081 es_ES
dc.description.references Nowicka A, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Selective knockout of gold active sites. Angew Chem Int Ed 49:3006–3009 es_ES
dc.description.references Hasse U, Fricke K, Dias D, Sievers G, Wulff H, Scholz F (2012) Grain boundary corrosion of the surface of annealed thin layers of gold by OH·radicals. J Solid State Electrochem 16:2383–2389 es_ES
dc.description.references Hasse U, Wulff H, Helm CA, Scholz F (2013) Formation of gold surfaces with a strongly preferred {100}-orientation. J Solid State Electrochem 17:3047–3053 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2011) Application of modified Tafel analysis to the identification of corrosion products on archaeological metals using voltammetry of microparticles. Electroanalysis 23:2803–2812 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA (2011) Dating archaeological lead artifacts from measurement of the corrosion content using the voltammetry of microparticles. Anal Chem 83:5639–5644 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA, Martinez-Lázaro I, Barrio J (2012) Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. J Solid State Electrochem 16:2349–2356 es_ES
dc.description.references Doménech-Carbó A, Doménech-Carbó MT, Capelo S, Pasíes T, Martínez-Lázaro I (2014) Dating archaeological copper/bronze artifacts using the voltammetry of microparticles. Angew Chem Int Ed 53:9262–9266 es_ES
dc.description.references Doménech-Carbó A, Capelo S, Piquero J, Doménech-Carbó MT, Barrio J, Fuentes A, Al-Sekkaneh W (2016) Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Mater Corr 67:120–129 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem