Mostrar el registro sencillo del ítem
dc.contributor.author | Kahn Epprecht, Eugenio | es_ES |
dc.contributor.author | Aparisi García, Francisco José | es_ES |
dc.contributor.author | Ruiz Rivero, Omar José | es_ES |
dc.contributor.author | Veiga, Alvaro | es_ES |
dc.date.accessioned | 2018-04-19T12:35:15Z | |
dc.date.available | 2018-04-19T12:35:15Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 0925-5273 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/100702 | |
dc.description.abstract | [EN] In some real situations there is the need of controlling p variables of a multivariate process, where p1 out of these p variables are easy and inexpensive to monitor, while the p(2)=p-p(1) remaining variables are difficult and/or expensive to measure. However, this set of p(2) variables is important to quickly detect the process shifts. This paper develops a control chart based on the T-2 statistic where normally only the set of p1 variables is monitored, and only when the T-2 value falls in a warning area the rest of variables (p(2)) are measured and combined with the sample values from the p(1) variables, in order to obtain a new T-2 statistic. This new chart is the double dimension T-2 (DDT2) control chart. The ARL of the DDT2 chart is obtained and the chart's parameters are optimized using genetic algorithms with the aim of maximizing the performance in detecting a given process shift. The optimized DDT2 chart is compared against the standard T-2 chart when all the variables are monitored. The results show that the DDT2 clearly outperforms T-2 chart in terms of cost, and in some cases even detects process shifts faster than the latter. In addition, friendly software has been developed with the objective of promoting the real application of this new control chart. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Production Economics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Double sampling | es_ES |
dc.subject | T-2 control chart | es_ES |
dc.subject | Cost sampling | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Reducing sampling costs in multivariate SPC with a double-dimension T-2 control chart | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijpe.2013.01.022 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijpe.2013.01.022 | es_ES |
dc.description.upvformatpinicio | 90 | es_ES |
dc.description.upvformatpfin | 104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 144 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\264656 | es_ES |