Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchez, Enrique | es_ES |
dc.contributor.author | Bannier, Emilie | es_ES |
dc.contributor.author | Vicent, Mónica | es_ES |
dc.contributor.author | Moreno, Arnaldo | es_ES |
dc.contributor.author | Salvador Moya, Mª Dolores | es_ES |
dc.contributor.author | Bonache Bezares, Victoria | es_ES |
dc.contributor.author | Klyatskina ., Elizaveta | es_ES |
dc.contributor.author | Boccaccini, Aldo R. | es_ES |
dc.date.accessioned | 2018-04-21T04:20:01Z | |
dc.date.available | 2018-04-21T04:20:01Z | |
dc.date.issued | 2011 | es_ES |
dc.identifier.issn | 1546-542X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/100802 | |
dc.description.abstract | [EN] Industry has a growing need of advanced coatings for a variety of applications (aerospace, special machinery, medicine, etc.). Nanostructured coatings have the potential of providing novel materials with enhanced properties. This paper describes the results of recent research on wear-resistant nanostructured coatings. Cermet (WC-Co) and ceramic (Al(2)O(3)-TiO(2)) coatings were obtained by atmospheric plasma spraying. Coating microstructure and phase composition were characterized using scanning electron microscopy, X-ray energy-dispersion microanalysis, and X-ray diffraction techniques. Vickers microhardness (H(V)) of the coatings was also measured. The microstructure and properties of the developed nanostructured coating were compared with those of their conventional counterparts. The influence of the substrate on both microstructure end properties was investigated, as the coatings were deposited on two different steels. In the WC-Co coatings, significant decomposition of the WC particles occurred during spraying, which is prejudicial to wear resistance. Nanostructured Al(2)O(3)-TiO(2) coatings exhibited a bimodal microstructure that retained the initial nanostructure of the powder. The presence of these areas leads to better tribological properties. | es_ES |
dc.description.sponsorship | This work was financially supported by the Spanish Minister for Sciences and Innovation (Project: MAT2006-12945-C03). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | International Journal of Applied Ceramic Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/j.1744-7402.2010.02547.x | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-12945-C03-02/ES/DESARROLLO Y PROPIEDADES DE RECUBRIMIENTOS DE CERMETS NANOESTRUCTURADOS DE ALTAS PRESTACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Sanchez, E.; Bannier, E.; Vicent, M.; Moreno, A.; Salvador Moya, MD.; Bonache Bezares, V.; Klyatskina ., E.... (2011). Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying. International Journal of Applied Ceramic Technology. 8(5):1136-1146. https://doi.org/10.1111/j.1744-7402.2010.02547.x | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/j.1744-7402.2010.02547.x | es_ES |
dc.description.upvformatpinicio | 1136 | es_ES |
dc.description.upvformatpfin | 1146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\40280 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Gell, M. (1995). Application opportunities for nanostructured materials and coatings. Materials Science and Engineering: A, 204(1-2), 246-251. doi:10.1016/0921-5093(95)09969-7 | es_ES |
dc.description.references | Dahotre, N. B., & Nayak, S. (2005). Nanocoatings for engine application. Surface and Coatings Technology, 194(1), 58-67. doi:10.1016/j.surfcoat.2004.05.006 | es_ES |
dc.description.references | Heimann, R. B. (1996). Applications of Plasma-Sprayed Ceramic Coatings. Key Engineering Materials, 122-124, 399-442. doi:10.4028/www.scientific.net/kem.122-124.399 | es_ES |
dc.description.references | He, J., & Schoenung, J. M. (2002). A review on nanostructured WC–Co coatings. Surface and Coatings Technology, 157(1), 72-79. doi:10.1016/s0257-8972(02)00141-x | es_ES |
dc.description.references | Song, E. P., Ahn, J., Lee, S., & Kim, N. J. (2006). Microstructure and wear resistance of nanostructured Al2O3–8wt.%TiO2 coatings plasma-sprayed with nanopowders. Surface and Coatings Technology, 201(3-4), 1309-1315. doi:10.1016/j.surfcoat.2006.01.052 | es_ES |
dc.description.references | Cao, G. (2004). NANOSTRUCTURES AND NANOMATERIALS - Synthesis, Properties and Applications. doi:10.1142/9781860945960 | es_ES |
dc.description.references | Eigen, N., Gärtner, F., Klassen, T., Aust, E., Bormann, R., & Kreye, H. (2005). Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders. Surface and Coatings Technology, 195(2-3), 344-357. doi:10.1016/j.surfcoat.2004.06.016 | es_ES |
dc.description.references | Vie, D., Martínez, E., Sapiña, F., Folgado, J.-V., Beltrán, A., Valenzuela, R. X., & Cortés-Corberán, V. (2004). Freeze-Dried Precursor-Based Synthesis of Nanostructured Cobalt−Nickel Molybdates Co1-xNixMoO4. Chemistry of Materials, 16(9), 1697-1703. doi:10.1021/cm035079w | es_ES |
dc.description.references | Karthikeyan, J., Berndt, C. C., Tikkanen, J., Reddy, S., & Herman, H. (1997). Plasma spray synthesis of nanomaterial powders and deposits. Materials Science and Engineering: A, 238(2), 275-286. doi:10.1016/s0921-5093(96)10568-2 | es_ES |
dc.description.references | Zhu, Y. C., Ding, C. X., Yukimura, K., Xiao, T. D., & Strutt, P. R. (2001). Deposition and characterization of nanostructured WC–Co coating. Ceramics International, 27(6), 669-674. doi:10.1016/s0272-8842(01)00016-5 | es_ES |
dc.description.references | Lin, X., Zeng, Y., Lee, S. W., & Ding, C. (2004). Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders. Journal of the European Ceramic Society, 24(4), 627-634. doi:10.1016/s0955-2219(03)00254-1 | es_ES |
dc.description.references | Lin, X., Zeng, Y., Zhou, X., & Ding, C. (2003). Microstructure of alumina–3wt.% titania coatings by plasma spraying with nanostructured powders. Materials Science and Engineering: A, 357(1-2), 228-234. doi:10.1016/s0921-5093(03)00164-3 | es_ES |
dc.description.references | Cao, X. ., Vassen, R., Schwartz, S., Jungen, W., Tietz, F., & Stöever, D. (2000). Spray-drying of ceramics for plasma-spray coating. Journal of the European Ceramic Society, 20(14-15), 2433-2439. doi:10.1016/s0955-2219(00)00112-6 | es_ES |
dc.description.references | Zeng, Y., Lee, S. ., & Ding, C. . (2002). Plasma spray coatings in different nanosize alumina. Materials Letters, 57(2), 495-501. doi:10.1016/s0167-577x(02)00818-2 | es_ES |
dc.description.references | Berger-Keller, N., Bertrand, G., Filiatre, C., Meunier, C., & Coddet, C. (2003). Microstructure of plasma-sprayed titania coatings deposited from spray-dried powder. Surface and Coatings Technology, 168(2-3), 281-290. doi:10.1016/s0257-8972(03)00223-8 | es_ES |
dc.description.references | Chwa, S. O., Klein, D., Toma, F. L., Bertrand, G., Liao, H., Coddet, C., & Ohmori, A. (2005). Microstructure and mechanical properties of plasma sprayed nanostructured TiO2–Al composite coatings. Surface and Coatings Technology, 194(2-3), 215-224. doi:10.1016/j.surfcoat.2004.07.080 | es_ES |
dc.description.references | Ahn, J., Hwang, B., Song, E. P., Lee, S., & Kim, N. J. (2006). Correlation of microstructure and wear resistance of Al2O3-TiO2 coatings plasma sprayed with nanopowders. Metallurgical and Materials Transactions A, 37(6), 1851-1861. doi:10.1007/s11661-006-0128-5 | es_ES |
dc.description.references | Jordan, E. ., Gell, M., Sohn, Y. ., Goberman, D., Shaw, L., Jiang, S., … Strutt, P. (2001). Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Materials Science and Engineering: A, 301(1), 80-89. doi:10.1016/s0921-5093(00)01382-4 | es_ES |
dc.description.references | Yang, Y., Wang, Y., Wang, Z., Liu, G., & Tian, W. (2008). Preparation and sintering behaviour of nanostructured alumina/titania composite powders modified with nano-dopants. Materials Science and Engineering: A, 490(1-2), 457-464. doi:10.1016/j.msea.2008.01.068 | es_ES |
dc.description.references | Chen, H., & Ding, C. X. (2002). Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surface and Coatings Technology, 150(1), 31-36. doi:10.1016/s0257-8972(01)01525-0 | es_ES |
dc.description.references | Zhou, C., Wang, N., & Xu, H. (2007). Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Materials Science and Engineering: A, 452-453, 569-574. doi:10.1016/j.msea.2006.11.027 | es_ES |
dc.description.references | Zeng, Y., Lee, S. W., Gao, L., & Ding, C. X. (2002). Atmospheric plasma sprayed coatings of nanostructured zirconia. Journal of the European Ceramic Society, 22(3), 347-351. doi:10.1016/s0955-2219(01)00291-6 | es_ES |
dc.description.references | Zhu, Y., Yukimura, K., Ding, C., & Zhang, P. (2001). Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying. Thin Solid Films, 388(1-2), 277-282. doi:10.1016/s0040-6090(01)00805-7 | es_ES |
dc.description.references | Sánchez, E., Bannier, E., Cantavella, V., Salvador, M. D., Klyatskina, E., Morgiel, J., … Boccaccini, A. R. (2008). Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying. Journal of Thermal Spray Technology, 17(3), 329-337. doi:10.1007/s11666-008-9181-5 | es_ES |
dc.description.references | Verdon, C., Karimi, A., & Martin, J.-L. (1998). A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Materials Science and Engineering: A, 246(1-2), 11-24. doi:10.1016/s0921-5093(97)00759-4 | es_ES |
dc.description.references | Li, C.-J., Ohmori, A., & Harada, Y. (1996). Effect of powder structure on the structure of thermally sprayed WC-Co coatings. Journal of Materials Science, 31(3), 785-794. doi:10.1007/bf00367900 | es_ES |
dc.description.references | McPherson, R. (1980). On the formation of thermally sprayed alumina coatings. Journal of Materials Science, 15(12), 3141-3149. doi:10.1007/bf00550387 | es_ES |
dc.description.references | Bansal, P., Padture, N. P., & Vasiliev, A. (2003). Improved interfacial mechanical properties of Al2O3-13wt%TiO2 plasma-sprayed coatings derived from nanocrystalline powders. Acta Materialia, 51(10), 2959-2970. doi:10.1016/s1359-6454(03)00109-5 | es_ES |