- -

Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez, Enrique es_ES
dc.contributor.author Bannier, Emilie es_ES
dc.contributor.author Vicent, Mónica es_ES
dc.contributor.author Moreno, Arnaldo es_ES
dc.contributor.author Salvador Moya, Mª Dolores es_ES
dc.contributor.author Bonache Bezares, Victoria es_ES
dc.contributor.author Klyatskina ., Elizaveta es_ES
dc.contributor.author Boccaccini, Aldo R. es_ES
dc.date.accessioned 2018-04-21T04:20:01Z
dc.date.available 2018-04-21T04:20:01Z
dc.date.issued 2011 es_ES
dc.identifier.issn 1546-542X es_ES
dc.identifier.uri http://hdl.handle.net/10251/100802
dc.description.abstract [EN] Industry has a growing need of advanced coatings for a variety of applications (aerospace, special machinery, medicine, etc.). Nanostructured coatings have the potential of providing novel materials with enhanced properties. This paper describes the results of recent research on wear-resistant nanostructured coatings. Cermet (WC-Co) and ceramic (Al(2)O(3)-TiO(2)) coatings were obtained by atmospheric plasma spraying. Coating microstructure and phase composition were characterized using scanning electron microscopy, X-ray energy-dispersion microanalysis, and X-ray diffraction techniques. Vickers microhardness (H(V)) of the coatings was also measured. The microstructure and properties of the developed nanostructured coating were compared with those of their conventional counterparts. The influence of the substrate on both microstructure end properties was investigated, as the coatings were deposited on two different steels. In the WC-Co coatings, significant decomposition of the WC particles occurred during spraying, which is prejudicial to wear resistance. Nanostructured Al(2)O(3)-TiO(2) coatings exhibited a bimodal microstructure that retained the initial nanostructure of the powder. The presence of these areas leads to better tribological properties. es_ES
dc.description.sponsorship This work was financially supported by the Spanish Minister for Sciences and Innovation (Project: MAT2006-12945-C03). en_EN
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof International Journal of Applied Ceramic Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/j.1744-7402.2010.02547.x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2006-12945-C03-02/ES/DESARROLLO Y PROPIEDADES DE RECUBRIMIENTOS DE CERMETS NANOESTRUCTURADOS DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Sanchez, E.; Bannier, E.; Vicent, M.; Moreno, A.; Salvador Moya, MD.; Bonache Bezares, V.; Klyatskina ., E.... (2011). Characterization of nanostructured ceramic and cermet coatings deposited by plasma spraying. International Journal of Applied Ceramic Technology. 8(5):1136-1146. https://doi.org/10.1111/j.1744-7402.2010.02547.x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/j.1744-7402.2010.02547.x es_ES
dc.description.upvformatpinicio 1136 es_ES
dc.description.upvformatpfin 1146 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\40280 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Gell, M. (1995). Application opportunities for nanostructured materials and coatings. Materials Science and Engineering: A, 204(1-2), 246-251. doi:10.1016/0921-5093(95)09969-7 es_ES
dc.description.references Dahotre, N. B., & Nayak, S. (2005). Nanocoatings for engine application. Surface and Coatings Technology, 194(1), 58-67. doi:10.1016/j.surfcoat.2004.05.006 es_ES
dc.description.references Heimann, R. B. (1996). Applications of Plasma-Sprayed Ceramic Coatings. Key Engineering Materials, 122-124, 399-442. doi:10.4028/www.scientific.net/kem.122-124.399 es_ES
dc.description.references He, J., & Schoenung, J. M. (2002). A review on nanostructured WC–Co coatings. Surface and Coatings Technology, 157(1), 72-79. doi:10.1016/s0257-8972(02)00141-x es_ES
dc.description.references Song, E. P., Ahn, J., Lee, S., & Kim, N. J. (2006). Microstructure and wear resistance of nanostructured Al2O3–8wt.%TiO2 coatings plasma-sprayed with nanopowders. Surface and Coatings Technology, 201(3-4), 1309-1315. doi:10.1016/j.surfcoat.2006.01.052 es_ES
dc.description.references Cao, G. (2004). NANOSTRUCTURES AND NANOMATERIALS - Synthesis, Properties and Applications. doi:10.1142/9781860945960 es_ES
dc.description.references Eigen, N., Gärtner, F., Klassen, T., Aust, E., Bormann, R., & Kreye, H. (2005). Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders. Surface and Coatings Technology, 195(2-3), 344-357. doi:10.1016/j.surfcoat.2004.06.016 es_ES
dc.description.references Vie, D., Martínez, E., Sapiña, F., Folgado, J.-V., Beltrán, A., Valenzuela, R. X., & Cortés-Corberán, V. (2004). Freeze-Dried Precursor-Based Synthesis of Nanostructured Cobalt−Nickel Molybdates Co1-xNixMoO4. Chemistry of Materials, 16(9), 1697-1703. doi:10.1021/cm035079w es_ES
dc.description.references Karthikeyan, J., Berndt, C. C., Tikkanen, J., Reddy, S., & Herman, H. (1997). Plasma spray synthesis of nanomaterial powders and deposits. Materials Science and Engineering: A, 238(2), 275-286. doi:10.1016/s0921-5093(96)10568-2 es_ES
dc.description.references Zhu, Y. C., Ding, C. X., Yukimura, K., Xiao, T. D., & Strutt, P. R. (2001). Deposition and characterization of nanostructured WC–Co coating. Ceramics International, 27(6), 669-674. doi:10.1016/s0272-8842(01)00016-5 es_ES
dc.description.references Lin, X., Zeng, Y., Lee, S. W., & Ding, C. (2004). Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders. Journal of the European Ceramic Society, 24(4), 627-634. doi:10.1016/s0955-2219(03)00254-1 es_ES
dc.description.references Lin, X., Zeng, Y., Zhou, X., & Ding, C. (2003). Microstructure of alumina–3wt.% titania coatings by plasma spraying with nanostructured powders. Materials Science and Engineering: A, 357(1-2), 228-234. doi:10.1016/s0921-5093(03)00164-3 es_ES
dc.description.references Cao, X. ., Vassen, R., Schwartz, S., Jungen, W., Tietz, F., & Stöever, D. (2000). Spray-drying of ceramics for plasma-spray coating. Journal of the European Ceramic Society, 20(14-15), 2433-2439. doi:10.1016/s0955-2219(00)00112-6 es_ES
dc.description.references Zeng, Y., Lee, S. ., & Ding, C. . (2002). Plasma spray coatings in different nanosize alumina. Materials Letters, 57(2), 495-501. doi:10.1016/s0167-577x(02)00818-2 es_ES
dc.description.references Berger-Keller, N., Bertrand, G., Filiatre, C., Meunier, C., & Coddet, C. (2003). Microstructure of plasma-sprayed titania coatings deposited from spray-dried powder. Surface and Coatings Technology, 168(2-3), 281-290. doi:10.1016/s0257-8972(03)00223-8 es_ES
dc.description.references Chwa, S. O., Klein, D., Toma, F. L., Bertrand, G., Liao, H., Coddet, C., & Ohmori, A. (2005). Microstructure and mechanical properties of plasma sprayed nanostructured TiO2–Al composite coatings. Surface and Coatings Technology, 194(2-3), 215-224. doi:10.1016/j.surfcoat.2004.07.080 es_ES
dc.description.references Ahn, J., Hwang, B., Song, E. P., Lee, S., & Kim, N. J. (2006). Correlation of microstructure and wear resistance of Al2O3-TiO2 coatings plasma sprayed with nanopowders. Metallurgical and Materials Transactions A, 37(6), 1851-1861. doi:10.1007/s11661-006-0128-5 es_ES
dc.description.references Jordan, E. ., Gell, M., Sohn, Y. ., Goberman, D., Shaw, L., Jiang, S., … Strutt, P. (2001). Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties. Materials Science and Engineering: A, 301(1), 80-89. doi:10.1016/s0921-5093(00)01382-4 es_ES
dc.description.references Yang, Y., Wang, Y., Wang, Z., Liu, G., & Tian, W. (2008). Preparation and sintering behaviour of nanostructured alumina/titania composite powders modified with nano-dopants. Materials Science and Engineering: A, 490(1-2), 457-464. doi:10.1016/j.msea.2008.01.068 es_ES
dc.description.references Chen, H., & Ding, C. X. (2002). Nanostructured zirconia coating prepared by atmospheric plasma spraying. Surface and Coatings Technology, 150(1), 31-36. doi:10.1016/s0257-8972(01)01525-0 es_ES
dc.description.references Zhou, C., Wang, N., & Xu, H. (2007). Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Materials Science and Engineering: A, 452-453, 569-574. doi:10.1016/j.msea.2006.11.027 es_ES
dc.description.references Zeng, Y., Lee, S. W., Gao, L., & Ding, C. X. (2002). Atmospheric plasma sprayed coatings of nanostructured zirconia. Journal of the European Ceramic Society, 22(3), 347-351. doi:10.1016/s0955-2219(01)00291-6 es_ES
dc.description.references Zhu, Y., Yukimura, K., Ding, C., & Zhang, P. (2001). Tribological properties of nanostructured and conventional WC–Co coatings deposited by plasma spraying. Thin Solid Films, 388(1-2), 277-282. doi:10.1016/s0040-6090(01)00805-7 es_ES
dc.description.references Sánchez, E., Bannier, E., Cantavella, V., Salvador, M. D., Klyatskina, E., Morgiel, J., … Boccaccini, A. R. (2008). Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying. Journal of Thermal Spray Technology, 17(3), 329-337. doi:10.1007/s11666-008-9181-5 es_ES
dc.description.references Verdon, C., Karimi, A., & Martin, J.-L. (1998). A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Materials Science and Engineering: A, 246(1-2), 11-24. doi:10.1016/s0921-5093(97)00759-4 es_ES
dc.description.references Li, C.-J., Ohmori, A., & Harada, Y. (1996). Effect of powder structure on the structure of thermally sprayed WC-Co coatings. Journal of Materials Science, 31(3), 785-794. doi:10.1007/bf00367900 es_ES
dc.description.references McPherson, R. (1980). On the formation of thermally sprayed alumina coatings. Journal of Materials Science, 15(12), 3141-3149. doi:10.1007/bf00550387 es_ES
dc.description.references Bansal, P., Padture, N. P., & Vasiliev, A. (2003). Improved interfacial mechanical properties of Al2O3-13wt%TiO2 plasma-sprayed coatings derived from nanocrystalline powders. Acta Materialia, 51(10), 2959-2970. doi:10.1016/s1359-6454(03)00109-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem