Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007
Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2007). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 144(2-3), 98-121. doi:10.1016/j.jnnfm.2007.03.009
Ammar, A., Normandin, M., Daim, F., Gonzalez, D., Cueto, E. and Chinesta, F. (n.d.), “Non‐incremental strategies based on separated representations: applications in computational rheology”,Communications in Mathematical Sciences(in press).
[+]
Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007
Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2007). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 144(2-3), 98-121. doi:10.1016/j.jnnfm.2007.03.009
Ammar, A., Normandin, M., Daim, F., Gonzalez, D., Cueto, E. and Chinesta, F. (n.d.), “Non‐incremental strategies based on separated representations: applications in computational rheology”,Communications in Mathematical Sciences(in press).
Chinesta, F., Ammar, A., Lemarchand, F., Beauchene, P., & Boust, F. (2008). Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Computer Methods in Applied Mechanics and Engineering, 197(5), 400-413. doi:10.1016/j.cma.2007.07.022
Gonzalez, D., Ammar, A., Chinesta, F. and Cueto, E. (2010), “Recent advances in the use of separated representations”,International Journal for Numerical Methods in Engineering, Vol. 81 No. 5, pp. 637‐59.
Rvachev, V. L., & Sheiko, T. I. (1995). R-Functions in Boundary Value Problems in Mechanics. Applied Mechanics Reviews, 48(4), 151-188. doi:10.1115/1.3005099
[-]