- -

Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Georgoulas, George es_ES
dc.contributor.author Tsoumas, Ioannis P. es_ES
dc.contributor.author Antonino-Daviu, J. es_ES
dc.contributor.author Climente Alarcón, Vicente es_ES
dc.contributor.author Stylios, Chrysostomos D. es_ES
dc.contributor.author Mitronikas, Epaminondas D. es_ES
dc.contributor.author Safacas, Athanasios N. es_ES
dc.date.accessioned 2018-04-21T04:23:33Z
dc.date.available 2018-04-21T04:23:33Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0278-0046 es_ES
dc.identifier.uri http://hdl.handle.net/10251/100812
dc.description.abstract [EN] This paper presents an advanced signal processing method applied to the diagnosis of rotor asymmetries in asynchronous machines. The approach is based on the application of complex empirical mode decomposition to the measured start-up current and on the subsequent extraction of a specific complex intrinsic mode function. Unlike other approaches, the method includes a pattern recognition stage that makes possible the automatic identification of the signature caused by the fault. This automatic detection is achieved by using a reliable methodology based on hidden Markov models. Both experimental data and a hybrid simulation experimental approach demonstrate the effectiveness of the proposed methodology. es_ES
dc.description.sponsorship This work was supported in part by the Conselleria d'Educacio, Formacio i Ocupacio of the Generalitat Valenciana, in the framework of the "Ayudas para la Realizacion de Proyectos de I+D para Grupos de Investigacion Emergentes," project reference GV/2012/020.
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Electronics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Asynchronous rotating machines es_ES
dc.subject Broken rotor bar detection es_ES
dc.subject Complex empirical mode decomposition (EMD) es_ES
dc.subject Hidden Markov models (HMMs) es_ES
dc.subject Pattern recognition es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TIE.2013.2284143 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F020/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Georgoulas, G.; Tsoumas, IP.; Antonino-Daviu, J.; Climente Alarcón, V.; Stylios, CD.; Mitronikas, ED.; Safacas, AN. (2014). Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines. IEEE Transactions on Industrial Electronics. 61(9):4937-4946. https://doi.org/10.1109/TIE.2013.2284143 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/TIE.2013.2284143 es_ES
dc.description.upvformatpinicio 4937 es_ES
dc.description.upvformatpfin 4946 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\272495 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem