Mostrar el registro sencillo del ítem
dc.contributor.author | Georgoulas, George | es_ES |
dc.contributor.author | Tsoumas, Ioannis P. | es_ES |
dc.contributor.author | Antonino-Daviu, J. | es_ES |
dc.contributor.author | Climente Alarcón, Vicente | es_ES |
dc.contributor.author | Stylios, Chrysostomos D. | es_ES |
dc.contributor.author | Mitronikas, Epaminondas D. | es_ES |
dc.contributor.author | Safacas, Athanasios N. | es_ES |
dc.date.accessioned | 2018-04-21T04:23:33Z | |
dc.date.available | 2018-04-21T04:23:33Z | |
dc.date.issued | 2014 | es_ES |
dc.identifier.issn | 0278-0046 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/100812 | |
dc.description.abstract | [EN] This paper presents an advanced signal processing method applied to the diagnosis of rotor asymmetries in asynchronous machines. The approach is based on the application of complex empirical mode decomposition to the measured start-up current and on the subsequent extraction of a specific complex intrinsic mode function. Unlike other approaches, the method includes a pattern recognition stage that makes possible the automatic identification of the signature caused by the fault. This automatic detection is achieved by using a reliable methodology based on hidden Markov models. Both experimental data and a hybrid simulation experimental approach demonstrate the effectiveness of the proposed methodology. | es_ES |
dc.description.sponsorship | This work was supported in part by the Conselleria d'Educacio, Formacio i Ocupacio of the Generalitat Valenciana, in the framework of the "Ayudas para la Realizacion de Proyectos de I+D para Grupos de Investigacion Emergentes," project reference GV/2012/020. | |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers | es_ES |
dc.relation.ispartof | IEEE Transactions on Industrial Electronics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Asynchronous rotating machines | es_ES |
dc.subject | Broken rotor bar detection | es_ES |
dc.subject | Complex empirical mode decomposition (EMD) | es_ES |
dc.subject | Hidden Markov models (HMMs) | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1109/TIE.2013.2284143 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2012%2F020/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Georgoulas, G.; Tsoumas, IP.; Antonino-Daviu, J.; Climente Alarcón, V.; Stylios, CD.; Mitronikas, ED.; Safacas, AN. (2014). Automatic Pattern Identification Based on the Complex Empirical Mode Decomposition of the Startup Current for the Diagnosis of Rotor Asymmetries in Asynchronous Machines. IEEE Transactions on Industrial Electronics. 61(9):4937-4946. https://doi.org/10.1109/TIE.2013.2284143 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1109/TIE.2013.2284143 | es_ES |
dc.description.upvformatpinicio | 4937 | es_ES |
dc.description.upvformatpfin | 4946 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 61 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\272495 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |