- -

How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off

Show simple item record

Files in this item

dc.contributor.author Irastorza, Ramiro Miguel es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2018-04-22T04:15:16Z
dc.date.available 2018-04-22T04:15:16Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/100833
dc.description.abstract [EN] All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5mm long and 17G in diameter) with a constant temperature protocol (70 degrees C) and a cooled electrode (30mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15mm for the dry electrode and 1.5mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3mm for the dry electrode and 30mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. es_ES
dc.description.sponsorship Agencia Nacional de Promocion Cientifica y Tecnologica de Argentina, Grant/Award Number: PICT-2012-1201; Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Grant/Award Number: TEC2014-52383-C3-R (TEC2014-52383-C3-1-R). en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof International Journal for Numerical Methods in Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ablation es_ES
dc.subject Radiofrequency heating es_ES
dc.subject Tumor ablation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cnm.2869 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-11-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Irastorza, RM.; Trujillo Guillen, M.; Berjano, E. (2017). How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off. International Journal for Numerical Methods in Biomedical Engineering. 33(11):2869-2877. doi:10.1002/cnm.2869 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cnm.2869 es_ES
dc.description.upvformatpinicio 2869 es_ES
dc.description.upvformatpfin 2877 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2040-7947 es_ES
dc.relation.pasarela S\329058 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Pearce, J. A. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. International Journal of Hyperthermia, 29(4), 262-280. doi:10.3109/02656736.2013.786140 es_ES
dc.description.references Wittkampf, F. H. M., Nakagawa, H., Yamanashi, W. S., Imai, S., & Jackman, W. M. (1996). Thermal Latency in Radiofrequency Ablation. Circulation, 93(6), 1083-1086. doi:10.1161/01.cir.93.6.1083 es_ES
dc.description.references Pinto, C. H., Taminiau, A. H. M., Vanderschueren, G. M., Hogendoorn, P. C. W., Bloem, J. L., & Obermann, W. R. (2002). Technical Considerations in CT-Guided Radiofrequency Thermal Ablation of Osteoid Osteoma: Tricks of the Trade. American Journal of Roentgenology, 179(6), 1633-1642. doi:10.2214/ajr.179.6.1791633 es_ES
dc.description.references Fukushima, T., Ikeda, K., Kawamura, Y., Sorin, Y., Hosaka, T., Kobayashi, M., … Kumada, H. (2015). Randomized Controlled Trial Comparing the Efficacy of Impedance Control and Temperature Control of Radiofrequency Interstitial Thermal Ablation for Treating Small Hepatocellular Carcinoma. Oncology, 89(1), 47-52. doi:10.1159/000375166 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 es_ES
dc.description.references Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370 es_ES
dc.description.references Chang, I. A. (2010). Considerations for Thermal Injury Analysis for RF Ablation Devices~!2009-09-09~!2009-12-19~!2010-02-04~! The Open Biomedical Engineering Journal, 4(2), 3-12. doi:10.2174/1874120701004020003 es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Hasgall PA Di Gennaro F Baumgartner C IT'IS Database for thermal and electromagnetic parameters of biological tissues 10.13099/VIP21000-03-0 www.itis.ethz.ch/database es_ES
dc.description.references Pandharipande, P. V., Krinsky, G. A., Rusinek, H., & Lee, V. S. (2005). Perfusion Imaging of the Liver: Current Challenges and Future Goals. Radiology, 234(3), 661-673. doi:10.1148/radiol.2343031362 es_ES
dc.description.references Tsushima, Y., Funabasama, S., Aoki, J., Sanada, S., & Endo, K. (2004). Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data1. Academic Radiology, 11(2), 215-223. doi:10.1016/s1076-6332(03)00578-6 es_ES
dc.description.references Irastorza, R. M., Trujillo, M., Martel Villagrán, J., & Berjano, E. (2016). Computer modelling of RF ablation in cortical osteoid osteoma: Assessment of the insulating effect of the reactive zone. International Journal of Hyperthermia, 32(3), 221-230. doi:10.3109/02656736.2015.1135998 es_ES
dc.description.references Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3 es_ES
dc.description.references Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868 es_ES
dc.description.references Venkatesan, A. M., Kadoury, S., Abi-Jaoudeh, N., Levy, E. B., Maass-Moreno, R., Krücker, J., … Wood, B. J. (2011). Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation. Radiology, 260(3), 848-856. doi:10.1148/radiol.11101985 es_ES
dc.description.references Ertürk, M. A., Sathyanarayana Hegde, S., & Bottomley, P. A. (2016). Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device. Radiology, 281(3), 927-932. doi:10.1148/radiol.2016151447 es_ES
dc.description.references Bishop, M., Rajani, R., Plank, G., Gaddum, N., Carr-White, G., Wright, M., … Niederer, S. (2015). Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation. Europace, 18(3), 376-383. doi:10.1093/europace/euv073 es_ES
dc.description.references Wang, H., Kang, W., Carrigan, T., Bishop, A., Rosenthal, N., Arruda, M., & Rollins, A. M. (2011). In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation. Journal of Biomedical Optics, 16(11), 110505. doi:10.1117/1.3656966 es_ES


This item appears in the following Collection(s)

Show simple item record