dc.contributor.author |
Irastorza, Ramiro Miguel
|
es_ES |
dc.contributor.author |
Trujillo Guillen, Macarena
|
es_ES |
dc.contributor.author |
Berjano, Enrique
|
es_ES |
dc.date.accessioned |
2018-04-22T04:15:16Z |
|
dc.date.available |
2018-04-22T04:15:16Z |
|
dc.date.issued |
2017 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/100833 |
|
dc.description.abstract |
[EN] All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5mm long and 17G in diameter) with a constant temperature protocol (70 degrees C) and a cooled electrode (30mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15mm for the dry electrode and 1.5mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3mm for the dry electrode and 30mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. |
es_ES |
dc.description.sponsorship |
Agencia Nacional de Promocion Cientifica y Tecnologica de Argentina, Grant/Award Number: PICT-2012-1201; Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Grant/Award Number: TEC2014-52383-C3-R (TEC2014-52383-C3-1-R). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
John Wiley & Sons |
es_ES |
dc.relation.ispartof |
International Journal for Numerical Methods in Biomedical Engineering |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Ablation |
es_ES |
dc.subject |
Radiofrequency heating |
es_ES |
dc.subject |
Tumor ablation |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.subject.classification |
TECNOLOGIA ELECTRONICA |
es_ES |
dc.title |
How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1002/cnm.2869 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.date.embargoEndDate |
2018-11-01 |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica |
es_ES |
dc.description.bibliographicCitation |
Irastorza, RM.; Trujillo Guillen, M.; Berjano, E. (2017). How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off. International Journal for Numerical Methods in Biomedical Engineering. 33(11):2869-2877. doi:10.1002/cnm.2869 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1002/cnm.2869 |
es_ES |
dc.description.upvformatpinicio |
2869 |
es_ES |
dc.description.upvformatpfin |
2877 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
33 |
es_ES |
dc.description.issue |
11 |
es_ES |
dc.identifier.eissn |
2040-7947 |
es_ES |
dc.relation.pasarela |
S\329058 |
es_ES |
dc.contributor.funder |
Ministerio de Economía, Industria y Competitividad |
es_ES |
dc.description.references |
Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 |
es_ES |
dc.description.references |
Pearce, J. A. (2013). Comparative analysis of mathematical models of cell death and thermal damage processes. International Journal of Hyperthermia, 29(4), 262-280. doi:10.3109/02656736.2013.786140 |
es_ES |
dc.description.references |
Wittkampf, F. H. M., Nakagawa, H., Yamanashi, W. S., Imai, S., & Jackman, W. M. (1996). Thermal Latency in Radiofrequency Ablation. Circulation, 93(6), 1083-1086. doi:10.1161/01.cir.93.6.1083 |
es_ES |
dc.description.references |
Pinto, C. H., Taminiau, A. H. M., Vanderschueren, G. M., Hogendoorn, P. C. W., Bloem, J. L., & Obermann, W. R. (2002). Technical Considerations in CT-Guided Radiofrequency Thermal Ablation of Osteoid Osteoma: Tricks of the Trade. American Journal of Roentgenology, 179(6), 1633-1642. doi:10.2214/ajr.179.6.1791633 |
es_ES |
dc.description.references |
Fukushima, T., Ikeda, K., Kawamura, Y., Sorin, Y., Hosaka, T., Kobayashi, M., … Kumada, H. (2015). Randomized Controlled Trial Comparing the Efficacy of Impedance Control and Temperature Control of Radiofrequency Interstitial Thermal Ablation for Treating Small Hepatocellular Carcinoma. Oncology, 89(1), 47-52. doi:10.1159/000375166 |
es_ES |
dc.description.references |
Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 |
es_ES |
dc.description.references |
Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 |
es_ES |
dc.description.references |
Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370 |
es_ES |
dc.description.references |
Chang, I. A. (2010). Considerations for Thermal Injury Analysis for RF Ablation Devices~!2009-09-09~!2009-12-19~!2010-02-04~! The Open Biomedical Engineering Journal, 4(2), 3-12. doi:10.2174/1874120701004020003 |
es_ES |
dc.description.references |
Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 |
es_ES |
dc.description.references |
Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 |
es_ES |
dc.description.references |
Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388 |
es_ES |
dc.description.references |
Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 |
es_ES |
dc.description.references |
Hasgall PA Di Gennaro F Baumgartner C IT'IS Database for thermal and electromagnetic parameters of biological tissues 10.13099/VIP21000-03-0 www.itis.ethz.ch/database |
es_ES |
dc.description.references |
Pandharipande, P. V., Krinsky, G. A., Rusinek, H., & Lee, V. S. (2005). Perfusion Imaging of the Liver: Current Challenges and Future Goals. Radiology, 234(3), 661-673. doi:10.1148/radiol.2343031362 |
es_ES |
dc.description.references |
Tsushima, Y., Funabasama, S., Aoki, J., Sanada, S., & Endo, K. (2004). Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data1. Academic Radiology, 11(2), 215-223. doi:10.1016/s1076-6332(03)00578-6 |
es_ES |
dc.description.references |
Irastorza, R. M., Trujillo, M., Martel Villagrán, J., & Berjano, E. (2016). Computer modelling of RF ablation in cortical osteoid osteoma: Assessment of the insulating effect of the reactive zone. International Journal of Hyperthermia, 32(3), 221-230. doi:10.3109/02656736.2015.1135998 |
es_ES |
dc.description.references |
Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3 |
es_ES |
dc.description.references |
Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868 |
es_ES |
dc.description.references |
Venkatesan, A. M., Kadoury, S., Abi-Jaoudeh, N., Levy, E. B., Maass-Moreno, R., Krücker, J., … Wood, B. J. (2011). Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation. Radiology, 260(3), 848-856. doi:10.1148/radiol.11101985 |
es_ES |
dc.description.references |
Ertürk, M. A., Sathyanarayana Hegde, S., & Bottomley, P. A. (2016). Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device. Radiology, 281(3), 927-932. doi:10.1148/radiol.2016151447 |
es_ES |
dc.description.references |
Bishop, M., Rajani, R., Plank, G., Gaddum, N., Carr-White, G., Wright, M., … Niederer, S. (2015). Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation. Europace, 18(3), 376-383. doi:10.1093/europace/euv073 |
es_ES |
dc.description.references |
Wang, H., Kang, W., Carrigan, T., Bishop, A., Rosenthal, N., Arruda, M., & Rollins, A. M. (2011). In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation. Journal of Biomedical Optics, 16(11), 110505. doi:10.1117/1.3656966 |
es_ES |