- -

Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alarcón, Emilio es_ES
dc.contributor.author González Béjar, María es_ES
dc.contributor.author Montes Navajas, Pedro Manuel es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Lissi, Eduardo es_ES
dc.contributor.author Scaiano, Juan C. es_ES
dc.date.accessioned 2018-05-10T04:14:14Z
dc.date.available 2018-05-10T04:14:14Z
dc.date.issued 2012 es_ES
dc.identifier.issn 1474-905X es_ES
dc.identifier.uri http://hdl.handle.net/10251/101665
dc.description.abstract [EN] Methylene blue shows an isotope dependent triplet lifetime that is 50% longer in D2O compared with H2O as a result of electronic-to-vibrational relaxation. The effect is enhanced when the dye is bound to curcubit[7]uril due to a combination of restricted mobility and a unfavorable vibrational coupling. es_ES
dc.description.sponsorship This work was supported by NSERC-Canada. M. G. B thanks the Spanish Ministry of Science and Innovation for a post-doctoral contract. E. A. Acknowledges Becas Chile and the University of Ottawa for postdoctoral fellowships. We also thank Michel Grenier for his help on the time resolved measurements.
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c1pp05227f es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Alarcón, E.; González Béjar, M.; Montes Navajas, PM.; García Gómez, H.; Lissi, E.; Scaiano, JC. (2012). Unexpected solvent isotope effect on the triplet lifetime of methylene blue associated to cucurbit[7]uril. Photochemical & Photobiological Sciences. 11(2):269-273. doi:10.1039/c1pp05227f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c1pp05227f es_ES
dc.description.upvformatpinicio 269 es_ES
dc.description.upvformatpfin 273 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.pmid 22025106
dc.relation.pasarela S\240212 es_ES
dc.contributor.funder Natural Sciences and Engineering Research Council of Canada
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile
dc.contributor.funder University of Ottawa
dc.description.references N. J. Turro , V.Ramamurthy and J. C.Scaiano, Modern molecular photochemistry of organic molecules, University Science Books, Sausalito, California, 2010 es_ES
dc.description.references Rekharsky, M. V., Ko, Y. H., Selvapalam, N., Kim, K., & Inoue, Y. (2007). Complexation Thermodynamics of Cucurbit[6]uril with Aliphatic Alcohols, Amines, and Diamines. Supramolecular Chemistry, 19(1-2), 39-46. doi:10.1080/10610270600915292 es_ES
dc.description.references Cohen, M. D., & Schmidt, G. M. J. (1964). 383. Topochemistry. Part I. A survey. Journal of the Chemical Society (Resumed), 1996. doi:10.1039/jr9640001996 es_ES
dc.description.references Cohen, M. D., Hirshberg, Y., & Schmidt, G. M. J. (1964). 389. Topochemistry. Part VII. The photoactivity of anils of salicylaldehydes in rigid solutions. Journal of the Chemical Society (Resumed), 2051. doi:10.1039/jr9640002051 es_ES
dc.description.references Cohen, M. D., Hirshberg, Y., & Schmidt, G. M. J. (1964). 390. Topochemistry. Part VIII. The effect of solvent, temperature, and light on the structure of anils of hydroxynaphthaldehydes. Journal of the Chemical Society (Resumed), 2060. doi:10.1039/jr9640002060 es_ES
dc.description.references Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., … Kim, K. (2000). New Cucurbituril Homologues:  Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n= 5, 7, and 8). Journal of the American Chemical Society, 122(3), 540-541. doi:10.1021/ja993376p es_ES
dc.description.references Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254k es_ES
dc.description.references Hennig, A., Ghale, G., & Nau, W. M. (2007). Effects of cucurbit[7]uril on enzymatic activity. Chemical Communications, (16), 1614. doi:10.1039/b618703j es_ES
dc.description.references Koner, A. L., & Nau, W. M. (2007). Cucurbituril Encapsulation of Fluorescent Dyes. Supramolecular Chemistry, 19(1-2), 55-66. doi:10.1080/10610270600910749 es_ES
dc.description.references Mohanty, J., Pal, H., Ray, A. K., Kumar, S., & Nau, W. M. (2007). Supramolecular Dye Laser with Cucurbit[7]uril in Water. ChemPhysChem, 8(1), 54-56. doi:10.1002/cphc.200600625 es_ES
dc.description.references Shaikh, M., Mohanty, J., Singh, P. K., Nau, W. M., & Pal, H. (2008). Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pKashifts. Photochem. Photobiol. Sci., 7(4), 408-414. doi:10.1039/b715815g es_ES
dc.description.references Sueishi, Y., Asano, K., Yamaoka, M., & Yamamoto, S. (2008). Characterization of Water-Soluble Cucurbit[7]uril in Alcohol-Water Mixtures by High-Pressure Studies on the Inclusion Complexation with New Methylene Blue. Zeitschrift für Physikalische Chemie, 222(1), 153-161. doi:10.1524/zpch.2008.222.1.153 es_ES
dc.description.references Zhou, Y., Yu, H., Zhang, L., Sun, J., Wu, L., Lu, Q., & Wang, L. (2008). Host properties of cucurbit [7] uril: fluorescence enhancement of acridine orange. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61(3-4), 259-264. doi:10.1007/s10847-008-9414-8 es_ES
dc.description.references González-Béjar, M., Montes-Navajas, P., García, H., & Scaiano, J. C. (2009). Methylene Blue Encapsulation in Cucurbit[7]uril: Laser Flash Photolysis and Near-IR Luminescence Studies of the Interaction with Oxygen. Langmuir, 25(18), 10490-10494. doi:10.1021/la9011923 es_ES
dc.description.references Montes-Navajas, P., Corma, A., & Garcia, H. (2008). Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 9(5), 713-720. doi:10.1002/cphc.200700735 es_ES
dc.description.references Mohanty, J., & Nau, W. M. (2005). Ultrastable Rhodamine with Cucurbituril. Angewandte Chemie International Edition, 44(24), 3750-3754. doi:10.1002/anie.200500502 es_ES
dc.description.references Montes-Navajas, P., & Garcia, H. (2010). Cucurbituril Complexation Enhances Intersystem Crossing and Triplet Lifetime of 2,4,6-Triphenylpyrylium Ion. The Journal of Physical Chemistry C, 114(5), 2034-2038. doi:10.1021/jp9095166 es_ES
dc.description.references Van Houten, J., & Watts, R. J. (1975). Effect of ligand and solvent deuteration on the excited state properties of the tris(2,2’-bipyridyl)ruthenium(II) ion in aqueous solution. Evidence for electron transfer to solvent. Journal of the American Chemical Society, 97(13), 3843-3844. doi:10.1021/ja00846a062 es_ES
dc.description.references Schmidt, R., & Bodesheim, M. (1994). Time-Resolved Measurement of O2(1.SIGMA.+g) in Solution. Phosphorescence from an Upper Excited State. The Journal of Physical Chemistry, 98(11), 2874-2876. doi:10.1021/j100062a024 es_ES
dc.description.references Hurst, J. R., & Schuster, G. B. (1983). Nonradiative relaxation of singlet oxygen in solution. Journal of the American Chemical Society, 105(18), 5756-5760. doi:10.1021/ja00356a009 es_ES
dc.description.references Schmidt, R., & Brauer, H. D. (1987). Radiationless deactivation of singlet oxygen (1.DELTA.g) by solvent molecules. Journal of the American Chemical Society, 109(23), 6976-6981. doi:10.1021/ja00257a012 es_ES
dc.description.references Rodgers, M. A. J. (1983). TIME RESOLVED STUDIES OF 1.27 μm LUMINESCENCE FROM SINGLET OXYGEN GENERATED IN HOMOGENEOUS and MICROHETEROGENEOUS FLUIDS. Photochemistry and Photobiology, 37(1), 99-103. doi:10.1111/j.1751-1097.1983.tb04440.x es_ES
dc.description.references Rodgers, M. A. J., & Snowden, P. T. (1982). Lifetime of oxygen (O2(1.DELTA.g)) in liquid water as determined by time-resolved infrared luminescence measurements. Journal of the American Chemical Society, 104(20), 5541-5543. doi:10.1021/ja00384a070 es_ES
dc.description.references Ogilby, P. R., & Foote, C. S. (1983). Chemistry of singlet oxygen. 42. Effect of solvent, solvent isotopic substitution, and temperature on the lifetime of singlet molecular oxygen (1.DELTA.g). Journal of the American Chemical Society, 105(11), 3423-3430. doi:10.1021/ja00349a007 es_ES
dc.description.references Gardner, P. J., & Kasha, M. (1969). Electronic Consequences of Vibrational Deficiency in Polyatomic Molecules. The Journal of Chemical Physics, 50(4), 1543-1552. doi:10.1063/1.1671240 es_ES
dc.description.references Schweitzer, C., & Schmidt, R. (2003). Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chemical Reviews, 103(5), 1685-1758. doi:10.1021/cr010371d es_ES
dc.description.references S. L. Murov , I.Carmichael and G. L.Hug, Handbook of photochemistry, Mercel Decker Inc, New York, 1993 es_ES
dc.description.references Beeby, A., Parker, A. W., Simpson, M. S. C., & Phillips, D. (1992). The effect of solvent deuteration on the photophysics of sulphonated aluminium phthalocyanine. Journal of Photochemistry and Photobiology B: Biology, 16(1), 73-81. doi:10.1016/1011-1344(92)85154-m es_ES
dc.description.references Nau, W. M., & Mohanty, J. (2005). Taming fluorescent dyes with cucurbituril. International Journal of Photoenergy, 7(3), 133-141. doi:10.1155/s1110662x05000206 es_ES
dc.description.references Alarcón, E., Edwards, A. M., Aspee, A., Moran, F. E., Borsarelli, C. D., Lissi, E. A., … Scaiano, J. C. (2010). Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dyelocalization. Photochem. Photobiol. Sci., 9(1), 93-102. doi:10.1039/b9pp00091g es_ES
dc.description.references Davila, J., & Harriman, A. (1990). PHOTOREACTIONS OF MACROCYCLIC DYES BOUND TO HUMAN SERUM ALBUMIN. Photochemistry and Photobiology, 51(1), 9-19. doi:10.1111/j.1751-1097.1990.tb01678.x es_ES
dc.description.references Engst, P., Kubát, P., & Jirsa, M. (1994). The influence of D2O on the photophysical properties of meso-tetra (4-sulphonatophenyl) porphine, Photosan III and tetrasulphonated aluminium and zinc phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 78(3), 215-219. doi:10.1016/1010-6030(93)03730-5 es_ES
dc.description.references Jensen, R. L., Arnbjerg, J., & Ogilby, P. R. (2010). Temperature Effects on the Solvent-Dependent Deactivation of Singlet Oxygen. Journal of the American Chemical Society, 132(23), 8098-8105. doi:10.1021/ja101753n es_ES
dc.description.references Lipert, R. J., & Colson, S. D. (1989). Deuterium isotope effects on S1 radiationless decay in phenol and on intermolecular vibrations in the phenol-water complex. The Journal of Physical Chemistry, 93(1), 135-139. doi:10.1021/j100338a030 es_ES
dc.description.references Tanielian, C., & Wolff, C. (1995). Determination of the Parameters Controlling Singlet Oxygen Production via Oxygen and Heavy-Atom Enhancement of Triplet Yields. The Journal of Physical Chemistry, 99(24), 9831-9837. doi:10.1021/j100024a026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem