Mostrar el registro sencillo del ítem
dc.contributor.author | Sun, Junliang | es_ES |
dc.contributor.author | Bonneau, Charlotte | es_ES |
dc.contributor.author | Cantin Sanz, Angel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Díaz Cabañas, Mª José | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Zhang, Daliang | es_ES |
dc.contributor.author | Li, Mingrun | es_ES |
dc.contributor.author | Zou, Xiaodong | es_ES |
dc.date.accessioned | 2018-05-10T04:16:19Z | |
dc.date.available | 2018-05-10T04:16:19Z | |
dc.date.issued | 2009 | es_ES |
dc.identifier.issn | 0028-0836 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/101670 | |
dc.description.abstract | [EN] The synthesis of crystalline molecular sieves with pore dimensions that fill the gap between microporous and mesoporous materials is a matter of fundamental and industrial interest(1-3). The preparation of zeolitic materials with extralarge pores and chiral frameworks would permit many new applications. Two important steps in this direction include the synthesis(4) of ITQ-33, a stable zeolite with 18 x 10 x 10 ring windows, and the synthesis(5) of SU-32, which has an intrinsically chiral zeolite structure and where each crystal exhibits only one handedness. Here we present a germanosilicate zeolite (ITQ-37) with extralarge 30-ring windows. Its structure was determined by combining selected area electron diffraction ( SAED) and powder X-ray diffraction (PXRD) in a charge-flipping algorithm(6). The framework follows the SrSi2 (srs) minimal net(7) and forms two unique cavities, each of which is connected to three other cavities to form a gyroidal channel system. These cavities comprise the enantiomorphous srs net of the framework. ITQ-37 is the first chiral zeolite with one single gyroidal channel. It has the lowest framework density (10.3 T atoms per 1,000 angstrom(3)) of all existing 4-coordinated crystalline oxide frameworks, and the pore volume of the corresponding silica polymorph would be 0.38 cm(3) g(-1). | es_ES |
dc.description.sponsorship | This project is supported by the CICYT ( Project MAT 2006-14274-C02-01 and Prometeo 2008 GV), the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA). J.S. and C. B. are supported by post-doctoral grants from the Carl-Trygger and Wenner-Gren foundations respectively. M. M. thanks ITQ for a scholarship. | |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/nature07957 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-14274-C02-01/ES/DISEÑO MOLECULAR DE NANOMATERIALES ESTRUCTURADOS ORGANICOS-INORGANICOS PARA SU APLICACION EN CATALISIS, SEPARACION DE GASES Y BIOMEDICA./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Sun, J.; Bonneau, C.; Cantin Sanz, A.; Corma Canós, A.; Díaz Cabañas, MJ.; Moliner Marin, M.; Zhang, D.... (2009). ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels. Nature. 458(7242):1154-1158. https://doi.org/10.1038/nature07957 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/nature07957 | es_ES |
dc.description.upvformatpinicio | 1154 | es_ES |
dc.description.upvformatpfin | 1158 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 458 | es_ES |
dc.description.issue | 7242 | es_ES |
dc.identifier.pmid | 19407798 | |
dc.relation.pasarela | S\36003 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Swedish Research Council Formas | |
dc.contributor.funder | Swedish Governmental Agency for Innovation Systems | |
dc.contributor.funder | Wenner-Gren Foundation | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Carl Trygger Foundation for Scientific Research | |
dc.description.references | Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002) | es_ES |
dc.description.references | Corma, A. State of the art and future challenges of zeolites as catalysis. J. Catal. 216, 298–312 (2003) | es_ES |
dc.description.references | Férey, G. Materials science: the simplicity of complexity—rational design of giant pores. Science 291, 994–995 (2001) | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Jorda, J. L., Martínez, C. & Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006) | es_ES |
dc.description.references | Tang, L. Q. et al. A zeolite family with chiral and achiral structures built from the same building layer. Nature Mater. 7, 381–385 (2008) | es_ES |
dc.description.references | Baerlocher, McCusker, L. B. & Palatinus, L. Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z. Kristallogr. 222, 47–53 (2007) | es_ES |
dc.description.references | Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallogr. A 59, 22–27 (2003) | es_ES |
dc.description.references | Schröder, G. E., Fogden, A. & Hyde, S. T. Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variation in genus-three cubic, tetragonal and rhombohedral surfaces. Eur. Phys. J. B 54, 509–524 (2006) | es_ES |
dc.description.references | Taylor, W. H. The structure of analcite (NaAlSi2O6.H2O). Z. Kristallogr. 74, 1–19 (1930) | es_ES |
dc.description.references | Gier, T. E., Bu, X., Feng, P. & Stucky, G. D. Synthesis and organization of zeolite-like materials with three-dimensional helical pores. Nature 395, 154–157 (1998) | es_ES |
dc.description.references | Zou, X., Conradsson, T., Klingstedt, M., Dadachov, M. S. & O’Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 437, 716–719 (2005) | es_ES |
dc.description.references | Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jorda, J. L. & Moliner, M. Rational design and HT techniques allow the synthesis of new IWR zeolite polymorphs. J. Am. Chem. Soc. 128, 4216–4217 (2006) | es_ES |
dc.description.references | Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006) | es_ES |
dc.description.references | Baerlocher, Ch et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007) | es_ES |
dc.description.references | Baerlocher, Ch et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater. 7, 631–635 (2008) | es_ES |
dc.description.references | Grosse-Kunstleve, R. W., McCusker, L. B. & Baerlocher, Ch Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites. J. Appl. Cryst. 30, 985–995 (1997) | es_ES |
dc.description.references | Palatinus, L. & Chapuis, G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 40, 786–790 (2007) | es_ES |
dc.description.references | Zou, X. D., Sukharev, Y. & Hovmöller, S. Quantitative measurement of intensities from electron diffraction patterns for structure determination—new features in the program system ELD. Ultramicroscopy 52, 436–444 (1993) | es_ES |
dc.description.references | O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1798 (2008) | es_ES |
dc.description.references | Climent, M. J., Corma, A. & Velty, A. Zeolites for the production of fine chemicals. Synthesis of the fructone fragance. J. Catal. 196, 345–351 (2000) | es_ES |
dc.description.references | Climent, M. J., Corma, A. & Velty, A. Design of a solid catalyst for the synthesis of a molecule with a orange blossom scent. Green Chem. 4, 565–569 (2002) | es_ES |
dc.description.references | Climent, M. J., Corma, A. & Velty, A. Synthesis of hyacinth, vanilla and orange blossom fragrances. The benefit of using zeikutes and delaminated zeolites as catalysts. Appl. Catal. Gen. 263, 155–161 (2004) | es_ES |
dc.description.references | Hovmöller, S. CRISP: Crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992) | es_ES |
dc.description.references | Young, R. A. The Rietveld Method 1–39 (IUCr Book Serials, Oxford Univ. Press, 1993) | es_ES |
dc.description.references | Delgado-Friedrichs, O. & O'Keeffe, M. Identification and symmetry computation for crystal nets. Acta Crystallogr. A 59, 351–360 (2003) | es_ES |
dc.description.references | Delgado-Friedrichs, O. Data structures and algorithms for tilings. I. Theor. Comput. Sci. 303, 431–445 (2003) | es_ES |
dc.description.references | Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr Comp. Commun. Newsl. 7, 4–38 (2006) | es_ES |