- -

ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sun, Junliang es_ES
dc.contributor.author Bonneau, Charlotte es_ES
dc.contributor.author Cantin Sanz, Angel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Díaz Cabañas, Mª José es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Zhang, Daliang es_ES
dc.contributor.author Li, Mingrun es_ES
dc.contributor.author Zou, Xiaodong es_ES
dc.date.accessioned 2018-05-10T04:16:19Z
dc.date.available 2018-05-10T04:16:19Z
dc.date.issued 2009 es_ES
dc.identifier.issn 0028-0836 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101670
dc.description.abstract [EN] The synthesis of crystalline molecular sieves with pore dimensions that fill the gap between microporous and mesoporous materials is a matter of fundamental and industrial interest(1-3). The preparation of zeolitic materials with extralarge pores and chiral frameworks would permit many new applications. Two important steps in this direction include the synthesis(4) of ITQ-33, a stable zeolite with 18 x 10 x 10 ring windows, and the synthesis(5) of SU-32, which has an intrinsically chiral zeolite structure and where each crystal exhibits only one handedness. Here we present a germanosilicate zeolite (ITQ-37) with extralarge 30-ring windows. Its structure was determined by combining selected area electron diffraction ( SAED) and powder X-ray diffraction (PXRD) in a charge-flipping algorithm(6). The framework follows the SrSi2 (srs) minimal net(7) and forms two unique cavities, each of which is connected to three other cavities to form a gyroidal channel system. These cavities comprise the enantiomorphous srs net of the framework. ITQ-37 is the first chiral zeolite with one single gyroidal channel. It has the lowest framework density (10.3 T atoms per 1,000 angstrom(3)) of all existing 4-coordinated crystalline oxide frameworks, and the pore volume of the corresponding silica polymorph would be 0.38 cm(3) g(-1). es_ES
dc.description.sponsorship This project is supported by the CICYT ( Project MAT 2006-14274-C02-01 and Prometeo 2008 GV), the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA). J.S. and C. B. are supported by post-doctoral grants from the Carl-Trygger and Wenner-Gren foundations respectively. M. M. thanks ITQ for a scholarship.
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/nature07957 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2006-14274-C02-01/ES/DISEÑO MOLECULAR DE NANOMATERIALES ESTRUCTURADOS ORGANICOS-INORGANICOS PARA SU APLICACION EN CATALISIS, SEPARACION DE GASES Y BIOMEDICA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Sun, J.; Bonneau, C.; Cantin Sanz, A.; Corma Canós, A.; Díaz Cabañas, MJ.; Moliner Marin, M.; Zhang, D.... (2009). ITQ-37 a chiral zeolite framework following the SrSi2 net and containing 30-ring extra-large gyroidal channels. Nature. 458(7242):1154-1158. https://doi.org/10.1038/nature07957 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/nature07957 es_ES
dc.description.upvformatpinicio 1154 es_ES
dc.description.upvformatpfin 1158 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 458 es_ES
dc.description.issue 7242 es_ES
dc.identifier.pmid 19407798
dc.relation.pasarela S\36003 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Swedish Research Council Formas
dc.contributor.funder Swedish Governmental Agency for Innovation Systems
dc.contributor.funder Wenner-Gren Foundation
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Carl Trygger Foundation for Scientific Research
dc.description.references Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002) es_ES
dc.description.references Corma, A. State of the art and future challenges of zeolites as catalysis. J. Catal. 216, 298–312 (2003) es_ES
dc.description.references Férey, G. Materials science: the simplicity of complexity—rational design of giant pores. Science 291, 994–995 (2001) es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jorda, J. L., Martínez, C. & Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006) es_ES
dc.description.references Tang, L. Q. et al. A zeolite family with chiral and achiral structures built from the same building layer. Nature Mater. 7, 381–385 (2008) es_ES
dc.description.references Baerlocher, McCusker, L. B. & Palatinus, L. Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Z. Kristallogr. 222, 47–53 (2007) es_ES
dc.description.references Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallogr. A 59, 22–27 (2003) es_ES
dc.description.references Schröder, G. E., Fogden, A. & Hyde, S. T. Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variation in genus-three cubic, tetragonal and rhombohedral surfaces. Eur. Phys. J. B 54, 509–524 (2006) es_ES
dc.description.references Taylor, W. H. The structure of analcite (NaAlSi2O6.H2O). Z. Kristallogr. 74, 1–19 (1930) es_ES
dc.description.references Gier, T. E., Bu, X., Feng, P. & Stucky, G. D. Synthesis and organization of zeolite-like materials with three-dimensional helical pores. Nature 395, 154–157 (1998) es_ES
dc.description.references Zou, X., Conradsson, T., Klingstedt, M., Dadachov, M. S. & O’Keeffe, M. A mesoporous germanium oxide with crystalline pore walls and its chiral derivative. Nature 437, 716–719 (2005) es_ES
dc.description.references Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jorda, J. L. & Moliner, M. Rational design and HT techniques allow the synthesis of new IWR zeolite polymorphs. J. Am. Chem. Soc. 128, 4216–4217 (2006) es_ES
dc.description.references Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006) es_ES
dc.description.references Baerlocher, Ch et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007) es_ES
dc.description.references Baerlocher, Ch et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater. 7, 631–635 (2008) es_ES
dc.description.references Grosse-Kunstleve, R. W., McCusker, L. B. & Baerlocher, Ch Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites. J. Appl. Cryst. 30, 985–995 (1997) es_ES
dc.description.references Palatinus, L. & Chapuis, G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 40, 786–790 (2007) es_ES
dc.description.references Zou, X. D., Sukharev, Y. & Hovmöller, S. Quantitative measurement of intensities from electron diffraction patterns for structure determination—new features in the program system ELD. Ultramicroscopy 52, 436–444 (1993) es_ES
dc.description.references O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1798 (2008) es_ES
dc.description.references Climent, M. J., Corma, A. & Velty, A. Zeolites for the production of fine chemicals. Synthesis of the fructone fragance. J. Catal. 196, 345–351 (2000) es_ES
dc.description.references Climent, M. J., Corma, A. & Velty, A. Design of a solid catalyst for the synthesis of a molecule with a orange blossom scent. Green Chem. 4, 565–569 (2002) es_ES
dc.description.references Climent, M. J., Corma, A. & Velty, A. Synthesis of hyacinth, vanilla and orange blossom fragrances. The benefit of using zeikutes and delaminated zeolites as catalysts. Appl. Catal. Gen. 263, 155–161 (2004) es_ES
dc.description.references Hovmöller, S. CRISP: Crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992) es_ES
dc.description.references Young, R. A. The Rietveld Method 1–39 (IUCr Book Serials, Oxford Univ. Press, 1993) es_ES
dc.description.references Delgado-Friedrichs, O. & O'Keeffe, M. Identification and symmetry computation for crystal nets. Acta Crystallogr. A 59, 351–360 (2003) es_ES
dc.description.references Delgado-Friedrichs, O. Data structures and algorithms for tilings. I. Theor. Comput. Sci. 303, 431–445 (2003) es_ES
dc.description.references Blatov, V. A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCr Comp. Commun. Newsl. 7, 4–38 (2006) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem