- -

Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Berjano, Enrique es_ES
dc.contributor.author D Avila, Andre es_ES
dc.date.accessioned 2018-05-10T09:04:00Z
dc.date.available 2018-05-10T09:04:00Z
dc.date.issued 2013 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101684
dc.description.abstract [EN] The electrical impedance measured during radiofrequency cardiac ablation (RFCA) is widely used in clinical studies to predict the heating evolution and hence the success of the procedure. We hypothesized that a model based on three resistors in series can mimic the total electrical impedance measured during RFCA. The three resistors or impedances are given by: impedance associated with the tissue around the active electrode (myocardium and circulating blood) (Z-A), that associated with the tissue around the dispersive electrode (Z-DE) and that associated with the rest of the body (Z-B). Our objective was to quantify the values associated with these three impedance types by an analytical method, after which the values obtained would be compared to those estimated from clinical data from previous studies. The results suggest that an RFCA using a 7 Fr 4-mm electrode would give a Z-A of around 75 ohms, a Z-DE around 20 ohms, and Z-B would be 15±10 ohms (for body surface area variations between 1.5 and 2.5 m^2). Finally, adaptations of the proposed model were used to explain the results of previous clinical studies using a different electrode arrangement, such as in bipolar ablation of the ventricular septum. es_ES
dc.description.sponsorship This work received financial support from the Spanish “Plan Nacional de I+D+I del Ministerio de Ciencia e Innovación” Grant No. TEC2011-27133-C02-01. es_ES
dc.language Inglés es_ES
dc.publisher Bentham Science es_ES
dc.relation.ispartof The Open Biomedical Engineering Journal es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Cardiac ablation es_ES
dc.subject Electrical impedance es_ES
dc.subject Lumped element model es_ES
dc.subject Percutaneous ablation es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Theoretical model es_ES
dc.subject Three-resistor model. es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2174/1874120720130603001 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Berjano, E.; D Avila, A. (2013). Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data. The Open Biomedical Engineering Journal. 7:62-70. https://doi.org/10.2174/1874120720130603001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2174/1874120720130603001 es_ES
dc.description.upvformatpinicio 62 es_ES
dc.description.upvformatpfin 70 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.eissn 1874-1207 es_ES
dc.identifier.pmid 23961299 en_EN
dc.identifier.pmcid PMC3744857 en_EN
dc.relation.pasarela S\255190 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Nath S, Haines D E. “Biophysics and pathology of catheter energy delivery systems” Prog Cardiovasc Dis 1995 January-February; 37 : 185-204. es_ES
dc.description.references Berjano E J. “Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future” Biomed Eng Online 2006 April; 5 : 2. es_ES
dc.description.references Wittkampf F H, and Nakagawa H. “RF catheter ablation: Lessons on lesions” Pacing Clin Electrophysiol 2006 November; 29 : 1285-97. es_ES
dc.description.references Neufeld G R GR. “Principles and hazards of electrosurgery including laparoscopy” Surg Gynecol Obstet 1978 November; 147 : 705-10. es_ES
dc.description.references Ragheb T, Riegle S, Geddes L A, and Amin V. “The impedance of a spherical monopolar electrode” Ann Biomed Eng 1992; 20 : 617-27. es_ES
dc.description.references Panescu D, Whayne J G, Fleischman S D, Mirotznik M S, Swanson D K, and Webster J G. “Three-dimensional finite element analysis of current density and temperature distributions during radio- frequency ablation” IEEE Trans Biomed Eng 1995 September; 42 : 879-90. es_ES
dc.description.references Foster K R, Schwan H P. “Dielectric properties of tissues and biological materials: a critical review” Crit Rev Biomed Eng 1989; 17 : 25-104. es_ES
dc.description.references Pearce J A. Electrosurgery. London: Chapman and Hall 1986. es_ES
dc.description.references Yamamoto T, and Yamamoto Y. “Electrical properties of the epidermal stratum corneum” Med Biol Eng 1976 March; 14 : 151-8. es_ES
dc.description.references Miklavcic D, Pavselj N, Hart F X. “Electric Properties of Tissues” In: Akay M, Ed. Wiley Encyclopedia of Biomedical Engineering. Hoboken: Wiley 2006; pp. 1-14. es_ES
dc.description.references Saito M, Nakayama K, Hori M, Fujimori Y. “A fundamental study on the electrodes for cardiac pacemakers” Jpn J Med Electron Biol Eng 1967; 5 : 192-8. es_ES
dc.description.references Nsah E, Berger R, Rosenthal L, et al. “Relation between impedance and electrode temperature during radiofrequency catheter ablation of accessory pathways and atrioventricular nodal reentrant tachycardia” Am Heart J 1998 November; 136 : 844-51. es_ES
dc.description.references Wen Z C, Chen S A, Chiang C E, et al. “Temperature and impedance monitoring during radiofrequency catheter ablation of slow AV node pathway in patients with atrioventricular node reentrant tachycardia” Int J Cardiol 1996 December; 57 : 257-63. es_ES
dc.description.references Strickberger S A, Hummel J, Gallagher M, et al. “Effect of accessory pathway location on the efficiency of heating during radiofrequency catheter ablation” Am Heart J 1995 January; 129 : 54-8. es_ES
dc.description.references Strickberger S A, Vorperian V R, Man K C, et al. “Relation between impedance and endocardial contact during radiofrequency catheter ablation” Am Heart J 1994 August; 128 : 226-9. es_ES
dc.description.references Cao H, Tungjitkusolmun S, Choy Y B, Tsai J Z, Vorperian V R, and Webster J G. “Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation” IEEE Trans Biomed Eng 2002 March; 49 : 247-3. es_ES
dc.description.references Rodriguez L M, Nabar A, Timmermans C, and Wellens H J. “Comparison of results of an 8-mm split-tip versus a 4-mm tip ablation catheter to perform radiofrequency ablation of type I atrial flutter” Am J Cardiol 2000 January; 85 : 109-12. es_ES
dc.description.references Sacher F F, O'Neill M D, Jais P, et al. “Prospective randomized comparison of 8-mm gold-tip, externally irrigated-tip and 8-mm platinum- iridium tip catheters for cavotricuspid isthmus ablation” J Cardiovasc Electrophysiol 2007 July; 18 : 709-13. es_ES
dc.description.references Jackman W M, Wang X Z, Friday K J, et al. “Catheter ablation of atrioventricular junction using radiofrequency current in 17 patients. Comparison of standard and large-tip catheter electrodes” Circulation 1991 May; 83 : 1562-76. es_ES
dc.description.references Nath S, DiMarco J P, Gallop R G, McRury I D, and Haines D E. “Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation” Am J Cardiol 1996 April; 77 : 765-7. es_ES
dc.description.references Santoro I, Xunzhang W, McClelland J, et al. “Effect of skin-patch location and surface area on impedance during radiofrequency catheter ablation” Pacing Clin Electrophysiol 1992; 15 : 580. es_ES
dc.description.references Borganelli M, el-Atassi R, Leon A, et al. “Determinants of impedance during radiofrequency catheter ablation in humans” Am J Cardiol 1992 April; 69 : 1095-7. es_ES
dc.description.references Park J K, Halperin B D, Kron J, Holcomb S R, and Silka M J. “Analysis of body surface area as a determinant of impedance during radiofrequency catheter ablation in adults and children” J Electrocardiol 1994 October; 27 : 329-32. es_ES
dc.description.references Wang D, Hulse J E, Walsh E P, and Saul J P. “Factors influencing impedance during radiofrequency ablation in humans” Chin Med J (Engl) 1995 June; 108 : 450-5. es_ES
dc.description.references Koruth J S, Dukkipati S, Miller M A, Neuzil P, d'Avila A, and Reddy V Y. “Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits” Heart Rhythm 2012 December; 9 : 1932-41. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem