- -

Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuente-Herraiz, David es_ES
dc.contributor.author Keller, Joseph es_ES
dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Roegner, Matthias es_ES
dc.contributor.author Rexroth, Sascha es_ES
dc.contributor.author Urchueguía Schölzel, Javier Fermín es_ES
dc.date.accessioned 2018-05-10T09:04:38Z
dc.date.available 2018-05-10T09:04:38Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101685
dc.description.abstract [EN] Light, being the fundamental energy source to sustain life on Earth, is the external factor with the strongest impact on photosynthetic microorganisms. Moreover, when considering biotechnological applications such as the production of energy carriers and commodities in photobioreactors, light supply within the reactor volume is one of the main limiting factors for an efficient system. Thus, the prediction of light availability and its spectral distribution is of fundamental importance for the productivity of photo-biological processes. The light field model here presented is able to predict the intensity and spectral distribution of light throughout the reactor volume. The input data for the algorithm are chlorophyll-specific absorption and scattering spectra at different irradiance values for a given organism, the depth of the photobioreactor, the cell-density and also the intensity and emission spectrum of the light source. Although in the form exposed here the model is optimized for photosynthetic microorganism cultures inside flat-type photobioreactors, the theoretical framework is easily extensible to other geometries. Our calculation scheme has been applied to model the light field inside Synechocystis sp. PCC 6803 wild-type and Olive antenna mutant cultures at different cell-density concentrations exposed to LED lamps of different colours, delivering results with reasonable accuracy, despite the data uncertainties. To achieve this, Synechocystis experimental attenuation profiles for different light sources were estimated by means of the Beer- Lambert law, whereby the corresponding downward irradiance attenuation coefficients were obtained through inherent optical properties at any wavelength within the photosynthetically active radiation band. In summary, the model is a general tool to predict light availability inside photosynthetic microorganism cultures and to optimize light supply, in respect to both intensity and spectral distribution, in technological applications. This knowledge is crucial for industrialscale optimisation of light distribution within photobioreactors and a fundamental parameter for unravelling the nature of many photosynthetic processes. es_ES
dc.description.sponsorship This project has received funding from the European Union's Seventh Programme for Research, Technological Development and Demonstration under grant agreement No 308518 CyanoFactory, to Javier Urchueguia's and Matthias Rogner's respective research groups and from the grant Contratos Predoctorales FPI 2013 of the Universitat Politecnica de Valencia to the first one. We would also like to thank David Lea-Smith and Dariusz Stramski for their fruitful and selfless contribution. We kindly acknowledge the experimental support of Saori Fuse for the cultivation of cyanobacteria. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Algal Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Absorption es_ES
dc.subject Scatering es_ES
dc.subject Attenuation es_ES
dc.subject Inherent optical properties es_ES
dc.subject Modelling es_ES
dc.subject Synechocystis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.algal.2017.01.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/308518/EU/Design, construction and demonstration of solar biofuel production using novel (photo)synthetic cell factories/
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-05-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Fuente-Herraiz, D.; Keller, J.; Conejero, JA.; Roegner, M.; Rexroth, S.; Urchueguía Schölzel, JF. (2017). Light distribution and spectral composition within cultures of micro-algae: Quantitative modelling of the light field in photobioreactors. Algal Research. 23:166-177. https://doi.org/10.1016/j.algal.2017.01.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.algal.2017.01.004 es_ES
dc.description.upvformatpinicio 166 es_ES
dc.description.upvformatpfin 177 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.identifier.eissn 2211-9264 es_ES
dc.relation.pasarela S\327722 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universitat Politècnica de València


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem