- -

Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author DIAZ, AURORA es_ES
dc.contributor.author MARTIN HERNANDEZ, AM es_ES
dc.contributor.author Dolcet-Sanjuan, Ramon es_ES
dc.contributor.author Garcés Claver, Ana Belén es_ES
dc.contributor.author ALVAREZ, JM es_ES
dc.contributor.author GARCIA-MAS, JORDI es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.date.accessioned 2018-05-11T04:20:14Z
dc.date.available 2018-05-11T04:20:14Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0040-5752 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101717
dc.description.abstract [EN] The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F-2 population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with "Trigonus" allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis. es_ES
dc.description.sponsorship We thank S. Casal, A. Mercader, and M. Mohamed-Amit for technical support and D. L. Goodchild for reviewing the English language. This work was supported by the Spanish Ministry of Economy and Competitiveness/FEDER grants AGL2012-40130-C02-02, AGL2015-64625-C2-2-R to AJM, AGL2014-53398-C2-2-R to BP, AGL2015-64625-C2-1-R, Centro de Excelencia Severo Ochoa 2016-2020, and the CERCA Programme/Generalitat de Catalunya to JGM and AMMM-H. AD was supported by a JAE-Doc contract from CSIC. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Theoretical and Applied Genetics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification GENETICA es_ES
dc.title Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00122-017-2928-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2012-40130-C02-02/ES/DESCIFRANDO LA BASE GENETICA DE LA MORFOLOGIA DEL FRUTO Y LA DOMESTICACION DE MELON/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-2-R/ES/EVOLUCION Y DIVERSIFICACION EN CUCUMIS. GENETICA DE LA DOMESTICACION, MORFOLOGIA DE FRUTO Y BARRERAS REPRODUCTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-53398-C2-2-R/ES/APROXIMACIONES BIOTECNOLOGICAS Y CULTURALES PARA LA MEJORA DE LAS RESISTENCIAS Y EL CONTROL DE ENFERMEDADES EN MELON Y SANDIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-1-R/ES/DISECCION GENETICA DE DOS CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CUCUMBER MOSAIC VIRUS Y MADURACION CLIMATERICA DE FRUTO./
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-09-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Diaz, A.; Martin Hernandez, A.; Dolcet-Sanjuan, R.; Garcés Claver, AB.; Alvarez, J.; Garcia-Mas, J.; Picó Sirvent, MB.... (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics. 130(9):1837-1856. https://doi.org/10.1007/s00122-017-2928-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00122-017-2928-y es_ES
dc.description.upvformatpinicio 1837 es_ES
dc.description.upvformatpfin 1856 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 130 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\346330 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Generalitat de Catalunya
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Consejo Superior de Investigaciones Científicas
dc.description.references Ashrafi H, Kinkade MP, Merk HL, Foolad MR (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549–567 es_ES
dc.description.references Asins MJ, Breto MP, Carbonell EA (1993) Salt tolerance in Lycopersicon species. II. Genetic effects and a search for associated traits. Theor Appl Genet 86:769–774 es_ES
dc.description.references Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838 es_ES
dc.description.references Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in and other plant species. Plant Phys 141:15–25 es_ES
dc.description.references Capel C, Fernández del Carmen A, Alba JM, Lima-Silva V, Hernández-Gras F, Salinas M, Boronat A, Angosto T, Botella MA, Fernández R, Granell A, Capel J, Lozano R (2015) Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor Appl Genet 128:2019–2203 es_ES
dc.description.references Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, Lev S, Sa’ar U, Davidovitz-Rikanati R, Baranes N, Bar E, Wolf D, Petreikov M, Shen S, Ben-Dor S, Rogachev I, Aharoni A, Ast T, Schuldiner M, Belausov E, Eshed R, Ophir R, Sherman A, Frei B, Neuhaus HE, Xu Y, Fei Z, Giovannoni J, Lewinsohn E, Tadmor Y, Paris HS, Katzir N, Burger Y, Schaffer AA (2014) The PH gene determines fruit acidity and contributed to the evolution of sweet melons. Nat Commun 5:4026 es_ES
dc.description.references Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90 es_ES
dc.description.references Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP (2007) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Res Crop Evol 54:1267–1283 es_ES
dc.description.references Díaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Staub JE, Zalapa JE, Cuevas HE, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang H, Fukino N, Matsumoto S, Garcia-Mas J, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111 es_ES
dc.description.references Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). PLoS One 9:e104188 es_ES
dc.description.references Díaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte AJ (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed 35:188 es_ES
dc.description.references Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321 es_ES
dc.description.references Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, Francois P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Peros JP (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217 es_ES
dc.description.references Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15 es_ES
dc.description.references Eduardo I, Arús P, Monforte AJ, Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Álvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89 es_ES
dc.description.references Esteras C, Formisano G, Roig C, Díaz A, Blanca J, García-Mas J, Gómez-Gillamón ML, López-Sesse A, Lázaro A, Monforte A, Pico B (2013) SNP genotyping in melons: genetic variation, population structure and linkage disequilibrium. Theor Appl Genet 126:1285–1303 es_ES
dc.description.references FAO (2017) Statistics Division of Food and Agriculture Organization of the United Nations (FAOSTAT). http://faostat.fao.org/ . Accessed 30 May 2017 es_ES
dc.description.references Fazza AC, Dallagnol LJ, Fazza AC, Monteiro CC, Lima BM, Wassano DT, Camargo LEA (2013) Mapping of resistance genes to races 1, 3 and 5 of Podosphaera xanthii in melon PI 414723. Crop Breed Appl Biot 13:349–355 es_ES
dc.description.references Fernandez-Silva I, Moreno E, Eduardo I, Arús P, Álvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235 es_ES
dc.description.references Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín Hernández AM, Álvarez JM, Monforte AJ (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940 es_ES
dc.description.references Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88 es_ES
dc.description.references Garcia-Mas J, Monforte AJ, Arús P (2004) Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite. Plant Syst Evol 248:191–203 es_ES
dc.description.references Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Nat Acad Sci 109(29):11872–11877 es_ES
dc.description.references Gonzalo MJ, Claveria E, Mofnorte AJ, Dolcet-Sanjuan R (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hort Sci 136:145–154 es_ES
dc.description.references Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTL and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533 es_ES
dc.description.references Kenigsbuch D, Cohen Y (1990) The inheritance of gynoecy in muskmelon. Genome 33:317–320 es_ES
dc.description.references Kirkbride JH Jr. (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, Boone es_ES
dc.description.references Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175 es_ES
dc.description.references Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199 es_ES
dc.description.references Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Pico B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 16:28 es_ES
dc.description.references Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422 es_ES
dc.description.references Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306 es_ES
dc.description.references Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852 es_ES
dc.description.references Monforte AJ, Asins MJ, Carbonell EA (1997) Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713 es_ES
dc.description.references Monforte AJ, Eduardo I, Abad S, Arús P (2005) Inheritance mode of fruit traits in melon: heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38 es_ES
dc.description.references Monforte AJ, Díaz A, Caño Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637 es_ES
dc.description.references Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two SNPs located near WUSCHEL. Plant Physiol 156:2244–2254 es_ES
dc.description.references Nerson H, Paris HS (2000) Relationship between fruit size and seed size in cucurbits. Cucurbit Genet Coop Rept 23:64–67 es_ES
dc.description.references Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Eduardo I, Arús P, Monforte AJ (2008) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hortic Sci 133:139–151 es_ES
dc.description.references Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70 es_ES
dc.description.references Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed 22:405–419 es_ES
dc.description.references Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941 es_ES
dc.description.references Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154 es_ES
dc.description.references Pitrat M (2012) Domestication and diversification of melon. In: Sari N, Solmaz I, Aras V (eds) Cucurbitaceae 2012, Proceedings of Xth Eucarpia meeting, Antaley (Turkey), pp 31–39 es_ES
dc.description.references Pitrat M (2013) Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnol 30:273–278 es_ES
dc.description.references Pitrat M (2017) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of the Cucurbitaceae. Springer, New York. doi: 10.1007/7397_2017_1 es_ES
dc.description.references Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515 es_ES
dc.description.references Ramamurthy RK, Waters BM (2015) Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204:163–177 es_ES
dc.description.references Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Evol 59:755–767 es_ES
dc.description.references Sabato D, Esteras C, Grillo O, Pico B, Bacchetta G (2015) Seeds morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Sci Hortic-Amsterdam 192:441–452 es_ES
dc.description.references Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273 es_ES
dc.description.references Soller M, Brody T (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39 es_ES
dc.description.references Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203 es_ES
dc.description.references Voorrips RE (2002) MapChart software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78 es_ES
dc.description.references Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh es_ES
dc.description.references Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723 es_ES
dc.description.references Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201 es_ES
dc.description.references Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem