- -

SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sall, Thierno es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Mollar García, Miguel Alfonso es_ES
dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.date.accessioned 2018-05-13T04:19:52Z
dc.date.available 2018-05-13T04:19:52Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0361-5235 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101833
dc.description.abstract [EN] The preparation and analysis of morphological, structural, optical, vibrational and compositional properties of tin monosulfide (SnS) thin films deposited on glass substrate by chemical spray pyrolysis is reported herein. The growth conditions were evaluated to reduce the presence of residual phases different to the SnS orthorhombic phase. X-ray diffraction spectra revealed the polycrystalline nature of the SnS films with orthorhombic structure and a preferential grain orientation along the (111) direction. At high substrate temperature (450A degrees C), a crystalline phase corresponding to the Sn2S3 phase was observed. Raman spectroscopy confirmed the dominance of the SnS phase and the presence of an additional Sn2S3 phase. Scanning electron microscopy (SEM) images reveal that the SnS film morphology depends on the substrate temperature. Between 250A degrees C and 350A degrees C, SnS films were shaped as rounded grains with some cracks between them, while at substrate temperatures above 400A degrees C, films were denser and more compact. Energy-dispersive x-ray spectroscopy (EDS) analysis showed that the stoichiometry of sprayed SnS films improved with the increase of substrate temperature and atomic force microscopy micrographs showed films well covered at 350A degrees C resulting in a rougher and bigger grain size. Optical and electrical measurements showed that the optical bandgap and the resistivity decreased when the substrate temperature increased, and smaller values, 1.46 eV and 60 Omega cm, respectively, were attained at 450A degrees C. These SnS thin films could be used as an absorber layer for the development of tandem solar cell devices due to their high absorbability in the visible region with optimum bandgap energy. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat valenciana (Prometeus 2014/044). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Electronic Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SnS es_ES
dc.subject Thin films es_ES
dc.subject Chemical spray pyrolysis es_ES
dc.subject XRD es_ES
dc.subject Raman spectroscopy es_ES
dc.subject AFM es_ES
dc.subject SEM es_ES
dc.subject Resistivity es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11664-016-5215-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Sall, T.; Marí, B.; Mollar García, MA.; Sans-Tresserras, JÁ. (2017). SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications. Journal of Electronic Materials. 46(3):1714-1719. https://doi.org/10.1007/s11664-016-5215-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11664-016-5215-9 es_ES
dc.description.upvformatpinicio 1714 es_ES
dc.description.upvformatpfin 1719 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\358008 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references N.R. Mathews, H.B.M. Anaya, M.A. Cortes-Jacome, C. Angeles-Chavez, and J.A. Toledo-Antonio, J. Electrochem. Soc. 157, H337 (2010). es_ES
dc.description.references N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K. Reddy, K.R. Gunasekhar, and E. Gopal, Appl. Phys. A 83, 133 (2006). es_ES
dc.description.references J.J. Loferski, J. Appl. Phys. 27, 777 (1956). es_ES
dc.description.references K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mat. Sol. C 90, 3041 (2006). es_ES
dc.description.references C. Gao, H.L. Shen, L. Sun, H.B. Huang, L.F. Lu, and H. Cai, Mater. Lett. 64, 2177 (2010). es_ES
dc.description.references D. Avellaneda, M.T.S. Nair, and P.K. Nair, J. Electrochem. Soc. 155, D517 (2008). es_ES
dc.description.references J.R.S. Brownson, C. Georges, and C. Levy-Clement, Chem. Mater. 19, 3080 (2007). es_ES
dc.description.references P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Eng. Mat 1, 1116 (2011). es_ES
dc.description.references T. Sall, M. Mollar, and B. Marí, J. Mater. Sci. 51, 7607 (2016). es_ES
dc.description.references K. Otto, A. Katerski, O. Volobujeva, A. Mere, and M. Krunks, Energy Proc. 3, 63 (2011). es_ES
dc.description.references J. Malaquias, P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, Thin Solid Films 519, 7416 (2011). es_ES
dc.description.references T.H. Sajeesh, A.R. Warrier, C. Sudha Kartha, and K.P. Vijayakumar, Thin Solid Films 518, 4370 (2010). es_ES
dc.description.references M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, and K.T. Ramakrishna Reddy, Curr. Appl. Phys. 15, 588 (2015). es_ES
dc.description.references A. Molenaar, Extended Abstracts, vol. 84-2, Pennington, N.J., 634 (1984) es_ES
dc.description.references S. López, S. Granados, and A. Ortiz, Semicond. Sci. Technol. 11, 433 (1996). es_ES
dc.description.references B. Cullity, Elements of X-ray Diffraction (New York: Addision-Wesley Publishing Company Inc, 1967), p. 501. es_ES
dc.description.references G. Willeke, R. Dasbach, B. Sailer, and E. Bucher, Thin Solid Films 213, 271 (1992). es_ES
dc.description.references H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, and M. Cardona, Phys. Rev. B 15, 2177 (1977). es_ES
dc.description.references S. Cheng and G. Conibeer, Thin Solid Films 520, 837 (2011). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem