Mostrar el registro sencillo del ítem
dc.contributor.author | Sall, Thierno | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | Mollar García, Miguel Alfonso | es_ES |
dc.contributor.author | Sans-Tresserras, Juan Ángel | es_ES |
dc.date.accessioned | 2018-05-13T04:19:52Z | |
dc.date.available | 2018-05-13T04:19:52Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0361-5235 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/101833 | |
dc.description.abstract | [EN] The preparation and analysis of morphological, structural, optical, vibrational and compositional properties of tin monosulfide (SnS) thin films deposited on glass substrate by chemical spray pyrolysis is reported herein. The growth conditions were evaluated to reduce the presence of residual phases different to the SnS orthorhombic phase. X-ray diffraction spectra revealed the polycrystalline nature of the SnS films with orthorhombic structure and a preferential grain orientation along the (111) direction. At high substrate temperature (450A degrees C), a crystalline phase corresponding to the Sn2S3 phase was observed. Raman spectroscopy confirmed the dominance of the SnS phase and the presence of an additional Sn2S3 phase. Scanning electron microscopy (SEM) images reveal that the SnS film morphology depends on the substrate temperature. Between 250A degrees C and 350A degrees C, SnS films were shaped as rounded grains with some cracks between them, while at substrate temperatures above 400A degrees C, films were denser and more compact. Energy-dispersive x-ray spectroscopy (EDS) analysis showed that the stoichiometry of sprayed SnS films improved with the increase of substrate temperature and atomic force microscopy micrographs showed films well covered at 350A degrees C resulting in a rougher and bigger grain size. Optical and electrical measurements showed that the optical bandgap and the resistivity decreased when the substrate temperature increased, and smaller values, 1.46 eV and 60 Omega cm, respectively, were attained at 450A degrees C. These SnS thin films could be used as an absorber layer for the development of tandem solar cell devices due to their high absorbability in the visible region with optimum bandgap energy. | es_ES |
dc.description.sponsorship | This work was supported by Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and Generalitat valenciana (Prometeus 2014/044). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Electronic Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | SnS | es_ES |
dc.subject | Thin films | es_ES |
dc.subject | Chemical spray pyrolysis | es_ES |
dc.subject | XRD | es_ES |
dc.subject | Raman spectroscopy | es_ES |
dc.subject | AFM | es_ES |
dc.subject | SEM | es_ES |
dc.subject | Resistivity | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11664-016-5215-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-77798-C4-2-R/ES/APROVECHAMIENTO DE LA LUZ SOLAR CON PROCESOS DE DOS FOTONES-TF/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Sall, T.; Marí, B.; Mollar García, MA.; Sans-Tresserras, JÁ. (2017). SnS Thin Films Prepared by Chemical Spray Pyrolysis at Different Substrate Temperatures for Photovoltaic Applications. Journal of Electronic Materials. 46(3):1714-1719. https://doi.org/10.1007/s11664-016-5215-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11664-016-5215-9 | es_ES |
dc.description.upvformatpinicio | 1714 | es_ES |
dc.description.upvformatpfin | 1719 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 46 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\358008 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | N.R. Mathews, H.B.M. Anaya, M.A. Cortes-Jacome, C. Angeles-Chavez, and J.A. Toledo-Antonio, J. Electrochem. Soc. 157, H337 (2010). | es_ES |
dc.description.references | N. Koteeswara Reddy, K. Ramesh, R. Ganesan, K. Reddy, K.R. Gunasekhar, and E. Gopal, Appl. Phys. A 83, 133 (2006). | es_ES |
dc.description.references | J.J. Loferski, J. Appl. Phys. 27, 777 (1956). | es_ES |
dc.description.references | K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mat. Sol. C 90, 3041 (2006). | es_ES |
dc.description.references | C. Gao, H.L. Shen, L. Sun, H.B. Huang, L.F. Lu, and H. Cai, Mater. Lett. 64, 2177 (2010). | es_ES |
dc.description.references | D. Avellaneda, M.T.S. Nair, and P.K. Nair, J. Electrochem. Soc. 155, D517 (2008). | es_ES |
dc.description.references | J.R.S. Brownson, C. Georges, and C. Levy-Clement, Chem. Mater. 19, 3080 (2007). | es_ES |
dc.description.references | P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Eng. Mat 1, 1116 (2011). | es_ES |
dc.description.references | T. Sall, M. Mollar, and B. Marí, J. Mater. Sci. 51, 7607 (2016). | es_ES |
dc.description.references | K. Otto, A. Katerski, O. Volobujeva, A. Mere, and M. Krunks, Energy Proc. 3, 63 (2011). | es_ES |
dc.description.references | J. Malaquias, P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, Thin Solid Films 519, 7416 (2011). | es_ES |
dc.description.references | T.H. Sajeesh, A.R. Warrier, C. Sudha Kartha, and K.P. Vijayakumar, Thin Solid Films 518, 4370 (2010). | es_ES |
dc.description.references | M. Vasudeva Reddy, G. Sreedevi, C. Park, R.W. Miles, and K.T. Ramakrishna Reddy, Curr. Appl. Phys. 15, 588 (2015). | es_ES |
dc.description.references | A. Molenaar, Extended Abstracts, vol. 84-2, Pennington, N.J., 634 (1984) | es_ES |
dc.description.references | S. López, S. Granados, and A. Ortiz, Semicond. Sci. Technol. 11, 433 (1996). | es_ES |
dc.description.references | B. Cullity, Elements of X-ray Diffraction (New York: Addision-Wesley Publishing Company Inc, 1967), p. 501. | es_ES |
dc.description.references | G. Willeke, R. Dasbach, B. Sailer, and E. Bucher, Thin Solid Films 213, 271 (1992). | es_ES |
dc.description.references | H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, and M. Cardona, Phys. Rev. B 15, 2177 (1977). | es_ES |
dc.description.references | S. Cheng and G. Conibeer, Thin Solid Films 520, 837 (2011). | es_ES |