- -

Cooperative Multi-Agent Planning: A survey

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cooperative Multi-Agent Planning: A survey

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torreño Lerma, Alejandro es_ES
dc.contributor.author Onaindia de la Rivaherrera, Eva es_ES
dc.contributor.author Komenda, Antonín es_ES
dc.contributor.author tolba, Michal es_ES
dc.date.accessioned 2018-05-14T04:19:48Z
dc.date.available 2018-05-14T04:19:48Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0360-0300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101894
dc.description.abstract [EN] Cooperative multi-agent planning (MAP) is a relatively recent research field that combines technologies, algorithms, and techniques developed by the Artificial Intelligence Planning and Multi-Agent Systems communities. While planning has been generally treated as a single-agent task, MAP generalizes this concept by considering multiple intelligent agents that work cooperatively to develop a course of action that satisfies the goals of the group. This article reviews the most relevant approaches to MAP, putting the focus on the solvers that took part in the 2015 Competition of Distributed and Multi-Agent Planning, and classifies them according to their key features and relative performance. es_ES
dc.description.sponsorship This work is supported by the GLASS project Grant No. TIN2014-55637-C2-2-R MINECO of the Spanish Ministerio de Economia, Industria y Competitividad, the Prometeo project II/2013/019 funded by the Valencian Government, and the four-year FPI-UPV research scholarship granted to the first author by the Universitat Politecnica de Valencia. Additionally, this research was partially supported by the Czech Science Foundation under Grant No. 15-20433Y CSF. en_EN
dc.language Inglés es_ES
dc.publisher Association for Computing Machinery es_ES
dc.relation.ispartof ACM Computing Surveys es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Distribution es_ES
dc.subject Planning and coordination strategies es_ES
dc.subject Multi-agent heuristic functions es_ES
dc.subject Privacy preservation es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Cooperative Multi-Agent Planning: A survey es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1145/3128584 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-55637-C2-2-R/ES/GESTION DE METAS PARA AUTONOMIA A LARGO PLAZO EN CIUDADES INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Komenda, A.; Tolba, M. (2017). Cooperative Multi-Agent Planning: A survey. ACM Computing Surveys. 50(6):84:1-84:32. https://doi.org/10.1145/3128584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1145/3128584 es_ES
dc.description.upvformatpinicio 84:1 es_ES
dc.description.upvformatpfin 84:32 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\350333 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Eyal Amir and Barbara Engelhardt. 2003. Factored planning. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03), Vol. 3. 929--935. es_ES
dc.description.references J. Benton, Amanda J. Coles, and Andrew I. Coles. 2012. Temporal planning with preferences and time-dependent continuous costs. In Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS’12). 2--10. es_ES
dc.description.references Andrea Bonisoli, Alfonso E. Gerevini, Alessandro Saetti, and Ivan Serina. 2014. A privacy-preserving model for the multi-agent propositional planning problem. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14). 973--974. es_ES
dc.description.references Daniel Borrajo. 2013. Multi-agent planning by plan reuse. In Proceedings of the 12th International Conference on Autonomous Agents and Multi-agent Systems (AAMAS’13). 1141--1142. es_ES
dc.description.references Daniel Borrajo and Susana Fernández. 2015. MAPR and CMAP. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 1--3. es_ES
dc.description.references Craig Boutilier and Ronen I. Brafman. 2001. Partial-order planning with concurrent interacting actions. J. Artific. Intell. Res. 14 (2001), 105--136. es_ES
dc.description.references Ronen I. Brafman. 2015. A privacy preserving algorithm for multi-agent planning and search. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15). 1530--1536. es_ES
dc.description.references Ronen I. Brafman and Carmel Domshlak. 2006. Factored planning: How, when, and when not. In Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference. 809--814. es_ES
dc.description.references Ronen I. Brafman and Carmel Domshlak. 2008. From one to many: Planning for loosely coupled multi-agent systems. In Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS’08). 28--35. es_ES
dc.description.references Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández. 2014. IBACOP and IBACOP2 planner. In Proceedings of the International Planning Competition (IPC’14). es_ES
dc.description.references Bradley J. Clement and Edmund H. Durfee. 1999. Top-down search for coordinating the hierarchical plans of multiple agents. In Proceedings of the 3rd Annual Conference on Autonomous Agents (AGENTS’99). ACM, New York, NY, 252--259. es_ES
dc.description.references Daniel D. Corkill. 1979. Hierarchical planning in a distributed environment. In Proceedings of the 6th International Joint Conference on Artificial Intelligence (IJCAI’79). 168--175. es_ES
dc.description.references Jeffrey S. Cox and Edmund H. Durfee. 2004. Efficient mechanisms for multiagent plan merging. In Proceedings of the 3rd Conference on Autonomous Agents and Multiagent Systems (AAMAS’04). 1342--1343. es_ES
dc.description.references Jeffrey S. Cox and Edmund H. Durfee. 2009. Efficient and distributable methods for solving the multiagent plan coordination problem. Multiagent Grid Syst. 5, 4 (2009), 373--408. es_ES
dc.description.references Matthew Crosby, Anders Jonsson, and Michael Rovatsos. 2014. A single-agent approach to multiagent planning. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14). 237--242. es_ES
dc.description.references Matthew Crosby, Michael Rovatsos, and Ronald P. A. Petrick. 2013. Automated agent decomposition for classical planning. In Proceedings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS’13). 46--54. es_ES
dc.description.references Mathijs de Weerdt, André Bos, Hans Tonino, and Cees Witteveen. 2003. A resource logic for multi-agent plan merging. Ann. Math. Artific. Intell. 37, 1-2 (2003), 93--130. es_ES
dc.description.references Mathijs de Weerdt and Bradley J. Clement. 2009. Introduction to planning in multiagent systems. Multiagent Grid Syst. 5, 4 (2009), 345--355. es_ES
dc.description.references Keith Decker, Salim Khan, Carl Schmidt, Gang Situ, Ravi Makkena, and Dennis Michaud. 2002. BioMAS: A multi-agent system for genomic annotation. Int. J. Coop. Info. Syst. 11, 3 (2002), 265--292. es_ES
dc.description.references Keith Decker and Victor R. Lesser. 1992. Generalizing the partial global planning algorithm. Int. J. Coop. Info. Syst. 2, 2 (1992), 319--346. es_ES
dc.description.references Marie desJardins and Michael Wolverton. 1999. Coordinating a distributed planning system. AI Mag. 20, 4 (1999), 45--53. es_ES
dc.description.references Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz, and Michael J. Wolverton. 1999. A survey of research in distributed continual planning. AI Mag. 20, 4 (1999), 13--22. es_ES
dc.description.references Yannis Dimopoulos, Muhammad A. Hashmi, and Pavlos Moraitis. 2012. -SATPLAN: Multi-agent planning as satisfiability. Knowl.-Based Syst. 29 (2012), 54--62. es_ES
dc.description.references Jürgen Dix, Héctor Muñoz-Avila, Dana S. Nau, and Lingling Zhang. 2003. IMPACTing SHOP: Putting an AI planner into a multi-agent environment. Ann. Math. Artific. Intell. 37, 4 (2003), 381--407. es_ES
dc.description.references Edmund H. Durfee. 1999. Distributed Problem Solving and Planning, Gerhard Weiss (ed.). MIT Press,118--149. es_ES
dc.description.references Edmund H. Durfee and Victor Lesser. 1991. Partial global planning: A coordination framework for distributed hypothesis formation. IEEE Trans. Syst. Man Cybernet. Spec. Issue Distrib. Sensor Netw. 21, 5 (1991), 1167--1183. es_ES
dc.description.references Eithan Ephrati and Jeffrey S. Rosenschein. 1994. Divide and conquer in multi-agent planning. In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI’94). 375--380. es_ES
dc.description.references Eithan Ephrati and Jeffrey S. Rosenschein. 1997. A heuristic technique for multi-agent planning. Ann. Math. Artific. Intell. 20, 1–4 (1997), 13--67. es_ES
dc.description.references Eric Fabre, Loïg Jezequel, Patrik Haslum, and Sylvie Thiébaux. 2010. Cost-optimal factored planning: Promises and pitfalls. In Proceedings of the 20th International Conference on Automated Planning and Scheduling (ICAPS’10). 65--72. es_ES
dc.description.references Boi Faltings, Thomas Léauté, and Adrian Petcu. 2008. Privacy guarantees through distributed constraint satisfaction. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT’08), Vol. 2. IEEE, 350--358. es_ES
dc.description.references Richard Fikes and Nils J. Nilsson. 1971. STRIPS: A new approach to the application of theorem proving to problem solving. Artific. Intell. 2, 3 (1971), 189--208. es_ES
dc.description.references Daniel Fišer, Michal Štolba, and Antonín Komenda. 2015. MAPlan. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 8--10. es_ES
dc.description.references Foundation for Intelligent Physical Agents. 2002. FIPA Interaction Protocol Specification. Retrieved from http://www.fipa.org/repository/ips.php3. es_ES
dc.description.references Maria Fox and Derek Long. 2003. PDDL2.1: An extension to PDDL for expressing temporal planning domains. J. Artific. Intell. Res. 20 (2003), 61--124. es_ES
dc.description.references Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela M. Veloso, Daniel Weld, and David Wilkins. 1998. PDDL—The planning domain definition language. AIPS-98 Planning Committee (1998). es_ES
dc.description.references Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning. Theory and Practice. Morgan Kaufmann. es_ES
dc.description.references Barbara J. Grosz, Luke Hunsberger, and Sarit Kraus. 1999. Planning and acting together. AI Mag. 20, 4 (1999), 23--34. es_ES
dc.description.references Malte Helmert. 2004. A planning heuristic based on causal graph analysis. Proceedings of the 14th International Conference on Automated Planning and Scheduling (ICAPS’04), 161--170. es_ES
dc.description.references Malte Helmert. 2006. The fast downward planning system. J. Artific. Intell. Res. 26, 1 (2006), 191--246. es_ES
dc.description.references Malte Helmert and Carmel Domshlak. 2009. Landmarks, critical paths and abstractions: What’s the difference anyway? In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS’09). 162--169. es_ES
dc.description.references Malte Helmert, Patrik Haslum, and Jörg Hoffmann. 2007. Flexible abstraction heuristics for optimal sequential planning. In Proceedings of the 17th International Conference on Automated Planning and Scheduling (ICAPS’07). 176--183. es_ES
dc.description.references Jörg Hoffmann and Bernhard Nebel. 2001. The FF planning system: Fast planning generation through heuristic search. J. Artific. Intell. Res. 14 (2001), 253--302. es_ES
dc.description.references Jörg Hoffmann, Julie Porteous, and Laura Sebastiá. 2004. Ordered landmarks in planning. J. Artific. Intell. Res. 22 (2004), 215--278. es_ES
dc.description.references Jan Hrncír, Michael Rovatsos, and Michal Jakob. 2015. Ridesharing on timetabled transport services: A multiagent planning approach. J. Intell. Transportat. Syst. 19, 1 (2015), 89--105. es_ES
dc.description.references Loïg Jezequel and Eric Fabre. 2012. A#: A distributed version of A* for factored planning. In Proceedings of the 51th IEEE Conference on Decision and Control (CDC’12). 7377--7382. es_ES
dc.description.references Anders Jonsson and Michael Rovatsos. 2011. Scaling up multiagent planning: A best-response approach. In Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS’11). AAAI, 114--121. es_ES
dc.description.references Jaume Jordán and Eva Onaindia. 2015. Game-theoretic approach for non-cooperative planning. In Proceedings of the 29th Conference on Artificial Intelligence (AAAI’15). 1357--1363. es_ES
dc.description.references Froduald Kabanza, Lu Shuyun, and Scott Goodwin. 2004. Distributed hierarchical task planning on a network of clusters. In Proceedings of the 16th International Conference on Parallel and Distributed Computing and Systems (PDCS’04). 139--140. es_ES
dc.description.references Henry A. Kautz. 2006. Deconstructing planning as satisfiability. In Proceedings of the National Conference on Artificial Intelligence, Vol. 21, 1524. es_ES
dc.description.references Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie Thiébaux. 2007. Factored planning using decomposition trees. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07). 1942--1947. es_ES
dc.description.references Antonín Komenda, Michal Stolba, and Daniel L. Kovacs. 2016. The international competition of distributed and multiagent planners (CoDMAP). AI Mag. 37, 3 (2016), 109--115. es_ES
dc.description.references Daniel L. Kovacs. 2012. A multi-agent extension of PDDL3.1. In Proceedings of the 3rd Workshop on the International Planning Competition (IPC’12). 19--27. es_ES
dc.description.references Jonas Kvarnström. 2011. Planning for loosely coupled agents using partial order forward-chaining. In Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS’11). AAAI, 138--145. es_ES
dc.description.references Victor Lesser, Keith Decker, Thomas Wagner, Norman Carver, Alan Garvey, Bryan Horling, Daniel Neiman, Rodion Podorozhny, M. Nagendra Prasad, Anita Raja, Regis Vincent, Ping Xuan, and X. Q. Zhang. 2004. Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton. Agents Multi-Agent Syst. 9, 1–2 (2004), 87--143. es_ES
dc.description.references Derek Long, Henry Kautz, Bart Selman, Blai Bonet, Hector Geffner, Jana Koehler, Michael Brenner, Joerg Hoffmann, Frank Rittinger, Corin R. Anderson, Daniel S. Weld, David E. Smith, Maria Fox, and Derek Long. 2000. The AIPS-98 planning competition. AI Mag. 21, 2 (2000), 13--33. es_ES
dc.description.references Nerea Luis and Daniel Borrajo. 2014. Plan merging by reuse for multi-agent planning. In Proceedings of the 2nd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP’14). 38--44. es_ES
dc.description.references Nerea Luis and Daniel Borrajo. 2015. PMR: Plan merging by reuse. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 11--13. es_ES
dc.description.references Shlomi Maliah, Ronen I. Brafman, and Guy Shani. 2017. Increased privacy with reduced communication in multi-agent planning. In Proceedings of the 27th International Conference on Automated Planning and Scheduling (ICAPS’17). 209--217. es_ES
dc.description.references Shlomi Maliah, Guy Shani, and Roni Stern. 2014. Privacy preserving landmark detection. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14). 597--602. es_ES
dc.description.references Shlomi Maliah, Guy Shani, and Roni Stern. 2016. Collaborative privacy preserving multi-agent planning. Auton. Agents Multi-Agent Syst. (2016), 1--38. es_ES
dc.description.references Felipe Meneguzzi and Lavindra de Silva. 2015. Planning in BDI agents: A survey of the integration of planning algorithms and agent reasoning. Knowl. Eng. Rev. 30, 1 (2015), 1--44. es_ES
dc.description.references Christian Muise, Nir Lipovetzky, and Miquel Ramirez. 2015. MAP-LAPKT: Omnipotent multi-agent planning via compilation to classical planning. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 14--16. es_ES
dc.description.references Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2: An HTN planning system. J. Artific. Intell. Res. 20 (2003), 379--404. es_ES
dc.description.references Raz Nissim and Ronen I. Brafman. 2012. Multi-agent A* for parallel and distributed systems. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12). 1265--1266. es_ES
dc.description.references Raz Nissim and Ronen I. Brafman. 2013. Cost-optimal planning by self-interested agents. In Proceedings of the 27th Conference on Artificial Intelligence (AAAI’13). es_ES
dc.description.references Raz Nissim and Ronen I. Brafman. 2014. Distributed heuristic forward search for multi-agent planning. J. Artific. Intell. Res. 51 (2014), 293--332. es_ES
dc.description.references Raz Nissim, Ronen I. Brafman, and Carmel Domshlak. 2010. A general, fully distributed multi-agent planning algorithm. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10). 1323--1330. es_ES
dc.description.references Sergio Pajares and Eva Onaindia. 2013. Context-aware multi-agent planning in intelligent environments. Info. Sciences 227 (2013), 22--42. es_ES
dc.description.references Michal Pechoucek, Martin Rehák, Petr Charvát, Tomáš Vlcek, and Michal Kolar. 2007. Agent-based approach to mass-oriented production planning: Case study. IEEE Trans. Syst. Man Cybernet. Part C 37, 3 (2007), 386--395. es_ES
dc.description.references Damien Pellier. 2010. Distributed planning through graph merging. In Proceedings of the 2nd International Conference on Agents and Artificial Intelligence (ICAART’10). 128--134. es_ES
dc.description.references Miquel Ramirez, Nir Lipovetzky, and Christian Muise. 2015. Lightweight Automated Planning ToolKiT. Retrieved from http://lapkt.org/. es_ES
dc.description.references Prashant P. Reddy and Manuela M. Veloso. 2011. Strategy learning for autonomous agents in smart grid markets. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11). 1446--1451. es_ES
dc.description.references Silvia Richter and Matthias Westphal. 2010. The LAMA planner: Guiding cost-based anytime planning with landmarks. J. Artific. Intell. Res. 39, 1 (2010), 127--177. es_ES
dc.description.references Valentin Robu, Han Noot, Han La Poutré, and Willem-Jan van Schijndel. 2011. A multi-agent platform for auction-based allocation of loads in transportation logistics. Expert Syst. Appl. 38, 4 (2011), 3483--3491. es_ES
dc.description.references Óscar Sapena, Eva Onaindia, Antonio Garrido, and Marlene Arangú. 2008. A distributed CSP approach for collaborative planning systems. Eng. Appl. Artific. Intell. 21, 5 (2008), 698--709. es_ES
dc.description.references Emilio Serrano, Jose M. Such, Juan A. Botía, and Ana García-Fornes. 2013. Strategies for avoiding preference profiling in agent-based e-commerce environments. Appl. Intell. (2013), 1--16. es_ES
dc.description.references Sven Seuken and Shlomo Zilberstein. 2008. Formal models and algorithms for decentralized decision making under uncertainty. Auton. Agents Multi-Agent Syst. 17, 2 (2008), 190--250. es_ES
dc.description.references Guy Shani, Shlomi Maliah, and Roni Stern. 2016. Stronger privacy preserving projections for multi-agent planning. In Proceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS’16). 221--229. es_ES
dc.description.references Claude E. Shannon. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 3 (1948), 379--423. es_ES
dc.description.references Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. 2004. HTN planning for web service composition using SHOP2. J. Web Semant. 1, 4 (2004), 377--396. es_ES
dc.description.references Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. 2015. A first multi-agent planner for required cooperation (MARC). In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 17--20. es_ES
dc.description.references Michal Štolba, Daniel Fišer, and Antonín Komenda. 2015. Admissible landmark heuristic for multi-agent planning. In Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS’15). 211--219. es_ES
dc.description.references Michal Štolba and Antonín Komenda. 2014. Relaxation heuristics for multiagent planning. In Proceedings of the 24th International Conference on Automated Planning and Scheduling (ICAPS’14). 298--306. es_ES
dc.description.references Michal Štolba and Antonín Komenda. 2015. MADLA: Planning with distributed and local search. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 21--24. es_ES
dc.description.references Michal Štolba, Jan Tožička, and Antonín Komenda. 2016. Quantifying privacy leakage in multi-agent planning. Proceedings of the 4rd ICAPS Workshop on Distributed and Multi-Agent Planning (DMAP’16). 80--88. es_ES
dc.description.references Jose M. Such, Ana García-Fornes, Agustín Espinosa, and Joan Bellver. 2012. Magentix2: A privacy-enhancing agent platform. Eng. Appl. Artific. Intell. (2012), 96--109. es_ES
dc.description.references Milind Tambe. 1997. Towards flexible teamwork. J. Artific. Intell. Res. 7 (1997), 83--124. es_ES
dc.description.references Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2012. An approach to multi-agent planning with incomplete information. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI’12), Vol. 242. IOS Press, 762--767. es_ES
dc.description.references Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2014. A flexible coupling approach to multi-agent planning under incomplete information. Knowl. Info. Syst. 38, 1 (2014), 141--178. es_ES
dc.description.references Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2014. FMAP: Distributed cooperative multi-agent planning. Appl. Intell. 41, 2 (2014), 606--626. es_ES
dc.description.references Alejandro Torreño, Eva Onaindia, and Óscar Sapena. 2015. Global heuristics for distributed cooperative multi-agent planning. In Proceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS’15). 225--233. es_ES
dc.description.references Alejandro Torreño, Óscar Sapena, and Eva Onaindia. 2015. MH-FMAP: Alternating global heuristics in multi-agent planning. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 25--28. es_ES
dc.description.references Jan Tožička, Jan Jakubuv, and Antonín Komenda. 2015. PSM-based planners description for CoDMAP 2015 competition. In Proceedings of the Competition of Distributed and Multi-Agent Planners (CoDMAP’15). 29--32. es_ES
dc.description.references Jan Tožička, Jan Jakubuv, Antonín Komenda, and Michal Pěchouček. 2015. Privacy-concerned multiagent planning. Knowl. Info. Syst. 48, 3 (2016), 581–618. es_ES
dc.description.references Jan Tožička, Michal Štolba, and Antonín Komenda. 2017. The limits of strong privacy preserving multi-agent planning. In Proceedings of the 27th International Conference on Automated Planning and Scheduling (ICAPS’17). 221--229. es_ES
dc.description.references Roman van der Krogt. 2007. Privacy loss in classical multiagent planning. In Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’07). 168--174. es_ES
dc.description.references Roman van der Krogt. 2009. Quantifying privacy in multiagent planning. Multiagent Grid Syst. 5, 4 (2009), 451--469. es_ES
dc.description.references David E. Wilkins. 1988. Practical Planning: Extending the Classical AI Planning Paradigm. Morgan Kaufmann. es_ES
dc.description.references David E. Wilkins and Karen L. Myers. 1998. A multiagent planning architecture. In Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems (AIPS’98). 154--162. es_ES
dc.description.references Michael Wolverton and Marie desJardins. 1998. Controlling communication in distributed planning using irrelevance reasoning. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI’98). 868--874. es_ES
dc.description.references Michael Wooldridge. 1997. Agent-based software engineering. IEEE Proc. Softw. Eng. 144, 1 (1997), 26--37. es_ES
dc.description.references Yu Zhang and Subbarao Kambhampati. 2014. A formal analysis of required cooperation in multi-agent planning. CoRR abs/1404.5643 (2014). http://arxiv.org/abs/1404.5643. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem