- -

On the detection of defects on specular car body surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the detection of defects on specular car body surfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molina, Jaime es_ES
dc.contributor.author Solanes Galbis, Juan Ernesto es_ES
dc.contributor.author Arnal-Benedicto, Laura es_ES
dc.contributor.author Tornero Montserrat, Josep es_ES
dc.date.accessioned 2018-05-14T04:20:59Z
dc.date.available 2018-05-14T04:20:59Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0736-5845 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101898
dc.description.abstract [EN] The automatic detection of small defects (of up to 0.2 mm in diameter) on car body surfaces following the painting process is currently one of the greatest issues facing quality control in the automotive industry. Although several systems have been developed during the last decade to provide a solution to this problem, these, to the best of our knowledge, have been focused solely on flat surfaces and have been unable to inspect other parts of the surfaces, namely style lines, edges and corners as well as deep concavities. This paper introduces a novel approach using deflectometry- and vision-based technologies in order to overcome this problem and ensure that the whole area is inspected. Moreover, since our approach, together with the system used, computes defects in less than 15 s, it satisfies cycle time production requirements (usually of around 30 s per car). Hence, a two-step algorithm is presented here: in the first step, a new pre-processing step (image fusion algorithm) is introduced to enhance the contrast between pixels with a low level of intensity (indicating the presence of defects) and those with a high level of intensity (indicating the absence of defects); for the second step, we present a novel post-processing step with an image background extraction approach based on a local directional blurring method and a modified image contrast enhancement, which enables detection of defects in the entire illuminated area. In addition, the post-processing step is processed several times using a multi-level structure, with computed image backgrounds of different resolution. In doing so, it is possible to detect larger defects, given that each level identifies defects of different sizes. Experimental results presented in this paper are obtained from the industrial automatic quality control system QEyeTunnel employed in the production line at the Mercedes-Benz factory in Vitoria, Spain. A complete analysis of the algorithm performance will be shown here, together with several tests proving the robustness and reliability of our proposal. es_ES
dc.description.sponsorship This work is supported by VALi+d (APOSTD/2016/044) and PROMETEO (PROMETEOII/2014/044) Programs, both from Conselleria d'Educacio, Generalitat Valenciana.
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Robotics and Computer-Integrated Manufacturing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automated visual inspection es_ES
dc.subject Image fusion es_ES
dc.subject Specular surfaces es_ES
dc.subject Painted surfaces es_ES
dc.subject Car body inspection es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title On the detection of defects on specular car body surfaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.rcim.2017.04.009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F044/ES/Técnicas de Fabricación Avanzada y Control de Calidad de nuevos materiales multifuncionales en movilidad sostenible/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Molina, J.; Solanes Galbis, JE.; Arnal-Benedicto, L.; Tornero Montserrat, J. (2017). On the detection of defects on specular car body surfaces. Robotics and Computer-Integrated Manufacturing. 48:263-278. https://doi.org/10.1016/j.rcim.2017.04.009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.rcim.2017.04.009 es_ES
dc.description.upvformatpinicio 263 es_ES
dc.description.upvformatpfin 278 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.relation.pasarela S\337998 es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem