- -

Cauchy Principal Value Contour Integral with Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Cauchy Principal Value Contour Integral with Applications

Show simple item record

Files in this item

dc.contributor.author Legua Fernández, Matilde Pilar es_ES
dc.contributor.author Sánchez Ruiz, Luis Manuel es_ES
dc.date.accessioned 2018-05-14T04:24:49Z
dc.date.available 2018-05-14T04:24:49Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101910
dc.description.abstract [EN] Cauchy principal value is a standard method applied in mathematical applications by which an improper, and possibly divergent, integral is measured in a balanced way around singularities or at infinity. On the other hand, entropy prediction of systems behavior from a thermodynamic perspective commonly involves contour integrals. With the aim of facilitating the calculus of such integrals in this entropic scenario, we revisit the generalization of Cauchy principal value to complex contour integral, formalize its definition and-by using residue theory techniques-provide an useful way to evaluate them. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cauchy principal value es_ES
dc.subject Contour integral es_ES
dc.subject Entropy as measurement es_ES
dc.subject Information extraction es_ES
dc.subject Thermodynamics es_ES
dc.subject aerodynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Cauchy Principal Value Contour Integral with Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e19050215 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Legua Fernandez, MP.; Sánchez Ruiz, LM. (2017). Cauchy Principal Value Contour Integral with Applications. Entropy. 19(5):1-9. doi:10.3390/e19050215 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e19050215 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\343982 es_ES


This item appears in the following Collection(s)

Show simple item record