Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Ballester, Santiago | es_ES |
dc.contributor.author | Corberán, José M. | es_ES |
dc.contributor.author | Gonzálvez-Maciá, José | es_ES |
dc.date.accessioned | 2018-05-17T04:28:17Z | |
dc.date.available | 2018-05-17T04:28:17Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 0140-7007 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/102112 | |
dc.description.abstract | [EN] The present work presents a model (Fin1Dx3) for air-to-refrigerant microchannel condensers and gas coolers, with any refrigerant circuitry. The model applies a segment-by-segment discretization to the heat exchanger, adding in each segment a novel bi-dimensional discretization to the fluids flow, fin and tube wall. Fin1Dx3 introduces a new approach to model the air-side heat transfer by using a composed function for the fin wall temperature, which allows to take into account more fundamentally the heat conduction between tubes. The proposed model accounts for: 2D longitudinal heat conduction in the tube wall, the heat conduction between tubes along the fin, and the unmixed air influence on performance. The paper presents the heat exchanger discretization, the governing equations, the numerical scheme employed to discretize equations and the solving methodology. The model has been validated against experimental data for both a condenser and a gas cooler, resulting in predicted capacity errors within +/- 5%. (C) 2012 Elsevier Ltd and IIR. All rights reserved. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge ACCIONA Infraestructuras for the financing support and collaboration. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Journal of Refrigeration | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Condenser | es_ES |
dc.subject | Model | es_ES |
dc.subject | Heat conduction | es_ES |
dc.subject | Microchannel | es_ES |
dc.subject | Fin | es_ES |
dc.subject | Gas cooler | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Numerical Model for Microchannel Condensers and Gas Coolers: Part I Model Description and Validation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.ijrefrig.2012.08.023 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06707-C02-01/ES/ESTUDIO DE OPTIMIZACION DE EQUIPOS FRIGORIFICOS Y DE AIRE ACONDICIONADO PARA SU FUNCIONAMIENTO CON REFRIGERANTES NATURALES HIDROCARBUROS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2011-26771-C02-01/ES/ESTUDIO DE EVAPORADORES Y CONDENSADORES BASADOS EN TECNOLOGIA DE MINICANALES PARA SU APLICACION EN EQUIPOS DE AIRE ACONDICIONADO, REFRIGERACION Y BOMBA DE CALOR ESTACIONARIOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Martínez-Ballester, S.; Corberán, JM.; Gonzálvez-Maciá, J. (2013). Numerical Model for Microchannel Condensers and Gas Coolers: Part I Model Description and Validation. International Journal of Refrigeration. 36(1):173-190. doi:10.1016/j.ijrefrig.2012.08.023 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.ijrefrig.2012.08.023 | es_ES |
dc.description.upvformatpinicio | 173 | es_ES |
dc.description.upvformatpfin | 190 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 36 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\238803 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |